Improving the efficiency and specificity of gene vectors is critical for the success of gene therapy. In an effort to generate viral mutants with controlled tropism we produced a library of adeno-associated virus (AAV) clones with randomly modified capsids and used it for the selection of receptor-targeting mutants. After several rounds of selection on different cell lines that were resistant to infection by wild-type (wt) AAV, infectious mutants were harvested at high titers.
View Article and Find Full Text PDFDrug Discov Today
December 2002
The increasing number of potential drug target candidates has driven the development of novel technologies designed to identify functionally important targets and enhance the subsequent lead discovery process. Highly specific synthetic nucleic acid ligands--also known as aptamers--offer a new exciting route in the drug discovery process by linking target validation directly with HTS. Recently, aptamers have proven to be valuable tools for modulating the function of endogenous cellular proteins in their natural environment.
View Article and Find Full Text PDFBackground: Recombinant adeno-associated virus (rAAV) has many advantages for gene therapeutic applications in comparison with other vector systems. One of the most promising features is the ability of wild-type (wt) AAV to integrate site-specifically into human chromosome 19. However, this feature is lost in rAAV vectors due to the removal of the rep-coding sequences.
View Article and Find Full Text PDFRecombinant adeno-associated virus type 2 (rAAV2) is a promising vector for human somatic gene therapy. However, its broad host range is a disadvantage for some applications, because it reduces the specificity of the gene transfer. To overcome this limitation, we sought to create a versatile rAAV vector targeting system which would allow us to redirect rAAV binding to specific cell surface receptors by simple coupling of different ligands to its capsid.
View Article and Find Full Text PDF