Publications by authors named "Anne Gehrig"

The contribution of germline copy number variants (CNVs) to risk of developing cancer in individuals with pathogenic BRCA1 or BRCA2 variants remains relatively unknown. We conducted the largest genome-wide analysis of CNVs in 15,342 BRCA1 and 10,740 BRCA2 pathogenic variant carriers. We used these results to prioritise a candidate breast cancer risk-modifier gene for laboratory analysis and biological validation.

View Article and Find Full Text PDF
Article Synopsis
  • Researchers studied the impact of new polygenic risk scores (PRS) for breast and prostate cancer on male carriers of BRCA1 and BRCA2 gene mutations, analyzing data from 1,801 individuals across these two genes.
  • The breast cancer PRS showed the strongest link to risk factors for BRCA1 and BRCA2 carriers, with specific odds ratios indicating increased risk associated with certain risk score variations.
  • The findings highlight the need for further research to tailor cancer risk assessments for male BRCA mutation carriers, which could improve their clinical management and outcomes.
View Article and Find Full Text PDF
Article Synopsis
  • The study examined how polygenic risk scores (PRS) for breast and ovarian cancers relate to risks for women with BRCA1 and BRCA2 gene variants.
  • It used data from nearly 32,000 female carriers to evaluate different versions of BC and EOC PRS, finding that specific scores were strongly linked to cancer risk.
  • Results indicated stronger associations between certain PRS and cancer risks, with implications for understanding absolute risk differences among women in different PRS groups.
View Article and Find Full Text PDF

The multifactorial likelihood analysis method has demonstrated utility for quantitative assessment of variant pathogenicity for multiple cancer syndrome genes. Independent data types currently incorporated in the model for assessing BRCA1 and BRCA2 variants include clinically calibrated prior probability of pathogenicity based on variant location and bioinformatic prediction of variant effect, co-segregation, family cancer history profile, co-occurrence with a pathogenic variant in the same gene, breast tumor pathology, and case-control information. Research and clinical data for multifactorial likelihood analysis were collated for 1,395 BRCA1/2 predominantly intronic and missense variants, enabling classification based on posterior probability of pathogenicity for 734 variants: 447 variants were classified as (likely) benign, and 94 as (likely) pathogenic; and 248 classifications were new or considerably altered relative to ClinVar submissions.

View Article and Find Full Text PDF

Purpose BRCA1/2 mutations increase the risk of breast and prostate cancer in men. Common genetic variants modify cancer risks for female carriers of BRCA1/2 mutations. We investigated-for the first time to our knowledge-associations of common genetic variants with breast and prostate cancer risks for male carriers of BRCA1/ 2 mutations and implications for cancer risk prediction.

View Article and Find Full Text PDF

Background: BRCA1 and, more commonly, BRCA2 mutations are associated with increased risk of male breast cancer (MBC). However, only a paucity of data exists on the pathology of breast cancers (BCs) in men with BRCA1/2 mutations. Using the largest available dataset, we determined whether MBCs arising in BRCA1/2 mutation carriers display specific pathologic features and whether these features differ from those of BRCA1/2 female BCs (FBCs).

View Article and Find Full Text PDF

Introduction: Individuals carrying pathogenic mutations in the BRCA1 and BRCA2 genes have a high lifetime risk of breast cancer. BRCA1 and BRCA2 are involved in DNA double-strand break repair, DNA alterations that can be caused by exposure to reactive oxygen species, a main source of which are mitochondria. Mitochondrial genome variations affect electron transport chain efficiency and reactive oxygen species production.

View Article and Find Full Text PDF

Importance: Limited information about the relationship between specific mutations in BRCA1 or BRCA2 (BRCA1/2) and cancer risk exists.

Objective: To identify mutation-specific cancer risks for carriers of BRCA1/2.

Design, Setting, And Participants: Observational study of women who were ascertained between 1937 and 2011 (median, 1999) and found to carry disease-associated BRCA1 or BRCA2 mutations.

View Article and Find Full Text PDF

Single Nucleotide Polymorphisms (SNPs) in genes involved in the DNA Base Excision Repair (BER) pathway could be associated with cancer risk in carriers of mutations in the high-penetrance susceptibility genes BRCA1 and BRCA2, given the relation of synthetic lethality that exists between one of the components of the BER pathway, PARP1 (poly ADP ribose polymerase), and both BRCA1 and BRCA2. In the present study, we have performed a comprehensive analysis of 18 genes involved in BER using a tagging SNP approach in a large series of BRCA1 and BRCA2 mutation carriers. 144 SNPs were analyzed in a two stage study involving 23,463 carriers from the CIMBA consortium (the Consortium of Investigators of Modifiers of BRCA1 and BRCA2).

View Article and Find Full Text PDF