The poor prognosis of advanced hepatocellular carcinoma (HCC) is driven by diverse features including dysregulated microRNAs inducing drug resistance and stemness. Lin-28 homolog A (LIN28A) and its partner zinc finger CCHC-type containing 11 (ZCCHC11) cooperate in binding, oligouridylation and subsequent degradation of tumorsuppressive let-7 precursor microRNAs. Functionally, activation of LIN28A was recently shown to promote stemness and chemoresistance in HCC.
View Article and Find Full Text PDFChemoresistance is a major hallmark driving the progression and poor prognosis of hepatocellular carcinoma (HCC). Limited chemoresponse of HCC was demonstrated to be mediated by mitogen-activated protein kinase 14 (MAPK14) and activating transcription factor 2 (ATF2). Recently, we have demonstrated loss of control of RAS-RAF-ERK-signaling as a consequence of miR-622 downregulation in HCC.
View Article and Find Full Text PDFInhibition of the RAS-RAF-ERK-pathway using sorafenib as a first-line and regorafenib as a second-line treatment approach is the only effective therapeutic strategy for advanced hepatocellular carcinoma (HCC). Recent studies suggest that wild-type KRAS and HRAS isoforms could majorly contribute to HCC progression and sorafenib resistance. In contrast, the role of neuroblastoma RAS viral oncogene homolog (NRAS) in HCC remained elusive.
View Article and Find Full Text PDF