J Mech Behav Biomed Mater
April 2015
Objective: This study tested the hypothesis that a ribose-based pre-treatment would protect the strength, ductility and toughness of γ-irradiation sterilized cortical bone.
Methods: Experiment 1: The effects of ribose pre-treatment (1.8M in PBS at 60°C for 24h) prior to 33 kGy of irradiation on strength, ductility and toughness (beams in three-point bending) and fracture toughness (J-integral at instability in single edge notched (bending)) were tested against matched non-irradiated and irradiated controls from bovine tibiae.
Bone allografts are often used in orthopedic reconstruction of skeletal defects resulting from trauma, bone cancer or revision of joint arthroplasty. γ-Irradiation sterilization is a widely-used biological safety measure; however it is known to embrittle bone. Irradiation has been shown to affect the post-yield properties, which are attributed to the collagen component of bone.
View Article and Find Full Text PDFNon-enzymatic glycation (NEG) and advanced glycation endproducts (AGEs) may contribute to bone fragility in various diseases, ageing, and other conditions by modifying bone collagen and causing degraded mechanical properties. In this study, we sought to further understand how collagen modification in an in vitro non-enzymatic ribation model leads to loss of cortical bone toughness. Previous in vitro studies using non-enzymatic ribation reported loss of ductility in the cortical bone.
View Article and Find Full Text PDF