Publications by authors named "Anne Fowles"

Background: While both preclinical and clinical studies suggest that the frequency of growing skeletal metastases is elevated in individuals with higher bone turnover, it is unclear whether this is a result of increased numbers of tumour cells arriving in active sites or of higher numbers of tumour cells being induced to divide by the bone micro-environment. Here we have investigated how the differences in bone turnover affect seeding of tumour cells and/or development of overt osteolytic bone metastasis using in vivo models of hormone-independent breast and prostate cancer.

Methods: Cohorts of 6 (young) and 16 (mature)-week old BALB/c nude mice were culled 1, 7 and 21 days after received intracardiac injection of luciferase expressing human prostate (PC3) or breast cancer (MDA-MB-231) cell lines labelled with a fluorescent cell membrane dye (Vybrant DiD).

View Article and Find Full Text PDF

This study aimed to identify subpopulations of prostate cancer cells that are responsible for the initiation of bone metastases. Using rapidly dividing human prostate cancer cell lines, we identified mitotically quiescent subpopulations (<1%), which we compared with the rapidly dividing populations for patterns of gene expression and for their ability to migrate to the skeletons of athymic mice. The study used 2-photon microscopy to map the presence/distribution of fluorescently labeled, quiescent cells and luciferase expression to determine the presence of growing bone metastases.

View Article and Find Full Text PDF

Dormant disseminated tumour cells can be detected in the bone marrow of breast cancer patients several years after resection of the primary tumour. The majority of these patients will remain asymptomatic, however, ∼ 15% will go on to develop overt bone metastases and this condition is currently incurable. The reason why these dormant cells are stimulated to proliferate and form bone tumours in some patients and not others remains to be elucidated.

View Article and Find Full Text PDF

Up to 90% of patients with castrate-resistant prostate cancer develop bone metastases, and the majority of these men have received androgen deprivation therapy known to cause bone loss. Whether this treatment-induced change to the bone microenvironment affects disseminated tumour cells, potentially stimulating development of bone metastasis, remains to be determined. The objective of this study was to use an in vivo model mimicking androgen ablation to establish the effects of this intervention on disseminated prostate cancer cells in bone.

View Article and Find Full Text PDF

It has been suggested that metastasis-initiating cells gain a foothold in bone by homing to a metastastatic microenvironment (or "niche"). Whereas the precise nature of this niche remains to be established, it is likely to contain bone cell populations including osteoblasts and osteoclasts. In the mouse tibia, the distribution of osteoblasts on endocortical bone surfaces is non-uniform, and we hypothesize that studying co-localization of individual tumor cells with resident cell populations will reveal the identity of critical cellular components of the niche.

View Article and Find Full Text PDF

Purpose: Clinical trials in early breast cancer have suggested that benefits of adjuvant bone-targeted treatments are restricted to women with established menopause. We developed models that mimic pre- and postmenopausal status to investigate effects of altered bone turnover on growth of disseminated breast tumor cells. Here, we report a differential antitumor effect of zoledronic acid (ZOL) in these two settings.

View Article and Find Full Text PDF