Anisotropic strain is an external field capable of selectively addressing the role of nematic fluctuations in promoting superconductivity. We demonstrate this using polarization-resolved elasto-Raman scattering by probing the evolution of nematic fluctuations under strain in the normal and superconducting state of the paradigmatic iron-based superconductor Ba(Fe_{1-x}Co_{x})_{2}As_{2}. In the parent compound BaFe_{2}As_{2} we observe a strain-induced suppression of the nematic susceptibility which follows the expected behavior of an Ising order parameter under a symmetry breaking field.
View Article and Find Full Text PDFWe report on the formation of topological defects emerging from the cycloidal antiferromagnetic order at the surface of bulk BiFeO_{3} crystals. Combining reciprocal and real-space magnetic imaging techniques, we first observe, in a single ferroelectric domain, the coexistence of antiferromagnetic domains in which the antiferromagnetic cycloid propagates along different wave vectors. We then show that the direction of these wave vectors is not strictly locked to the preferred crystallographic axes as continuous rotations bridge different wave vectors.
View Article and Find Full Text PDFWe report an original procedure for the elaboration of very high-quality single crystals of superconducting HgBaCaCuO mercury cuprates. These single crystals are unique, with very high-quality surface paving the way for spectroscopic, transport, and thermodynamic probes in order to understand the hole-doped cuprate phase diagram. Annealing allows one to optimize T up to T = 133 K.
View Article and Find Full Text PDF