Publications by authors named "Anne Eichmann"

Hereditary hemorrhagic telangiectasia is an autosomal dominant disorder caused by mutations in the bone morphogenetic protein signaling pathway, leading to arteriovenous malformations. While previously thought to share molecular and cellular dysregulation, this study reveals highly distinct mechanisms depending on whether mutations occur in Alk1 or SMAD4. Loss of SMAD4 enhances endothelial cell responses to flow, including flow-regulated transcription and cell migration against blood flow, causing excessive pruning of capillaries and the formation of single large shunts.

View Article and Find Full Text PDF

The integrity of the blood-retina barrier (BRB) is crucial for phototransduction and vision, by tightly restricting transport of molecules between the blood and surrounding neuronal cells. Breakdown of the BRB leads to the development of retinal diseases. Here, we show that Netrin-1/Unc5b and Norrin/Lrp5 signaling establish a zonated endothelial cell gene expression program that controls BRB integrity.

View Article and Find Full Text PDF

Obesity, a growing pandemic in Western societies, significantly impacts metabolic health and contributes to visual disorders. While the systemic consequences of obesity, such as chronic inflammation and insulin resistance, are well-studied in adults, its early-life effects on retinal health remain underexplored. Using a maternal Western Diet (WD) exposure model, we investigated the developmental impact of early-life metabolic disturbances on retinal and cognitive function.

View Article and Find Full Text PDF

Background: Hereditary hemorrhagic telangiectasia (HHT) is an inherited vascular disorder characterized by arteriovenous malformations (AVMs). Loss-of-function mutations in Activin receptor-like kinase 1 (ALK1) cause type 2 HHT and knockout (KO) mice develop AVMs due to overactivation of VEGFR2/PI3K/AKT signaling pathways. However, the full spectrum of signaling alterations in mutants remains unknown and means to combat AVM formation in patients are yet to be developed.

View Article and Find Full Text PDF

Common intronic enhancer SNPs in Shroom3 associate with CKD in GWAS, although there is paucity of detailed mechanism. Previously, we reported a role for Shroom3 in mediating crosstalk between TGFβ1- & Wnt/Ctnnb1 pathways promoting renal fibrosis (TIF). However, beneficial roles for Shroom3 in proteinuria have also been reported suggesting pleiotropic effects.

View Article and Find Full Text PDF

Background: The Rho kinases 1 and 2 (ROCK1/2) are serine-threonine specific protein kinases that control actin cytoskeleton dynamics. They are expressed in all cells throughout the body, including cardiomyocytes, smooth muscle cells and endothelial cells, and intimately involved in cardiovascular health and disease. Pharmacological ROCK inhibition is beneficial in mouse models of hypertension, atherosclerosis, and neointimal thickening that display overactivated ROCK.

View Article and Find Full Text PDF

Roundabout (ROBO) 1 and 2 are transmembrane receptors that bind secreted SLIT ligands through their extracellular domains (ECDs) and signal through their cytoplasmic domains to modulate the cytoskeleton and regulate cell migration, adhesion, and proliferation. SLIT-ROBO signaling regulates pathological ocular neovascularization, which is a major cause of vision loss worldwide, but pharmacological tools to prevent SLIT-ROBO signaling are lacking. Here, we developed human monoclonal antibodies (mAbs) against the ROBO1 and ROBO2 ECDs.

View Article and Find Full Text PDF

Aims: Circulating levels of sphingosine 1-phosphate (S1P), an HDL-associated ligand for the endothelial cell (EC) protective S1P receptor-1 (S1PR1), are reduced in disease states associated with endothelial dysfunction. Yet, as S1PR1 has high affinity for S1P and can be activated by ligand-independent mechanisms and EC autonomous S1P production, it is unclear if relative reductions in circulating S1P can cause endothelial dysfunction. It is also unclear how EC S1PR1 insufficiency, whether induced by deficiency in circulating ligand or by S1PR1-directed immunosuppressive therapy, affects different vascular subsets.

View Article and Find Full Text PDF

Food intake and energy expenditure are sensed and processed by multiple brain centres to uphold energy homeostasis. Evidence from the past decade points to the brain vasculature as a new critical player in regulating energy balance that functions in close association with the local neuronal networks. Nutritional imbalances alter many properties of the neurovascular system (such as neurovascular coupling and blood-brain barrier permeability), thus suggesting a bidirectional link between the nutritional milieu and neurovascular health.

View Article and Find Full Text PDF

The proliferation of the endothelium is a highly coordinated process to ensure the emergence, expansion, and homeostasis of the vasculature. While Bone Morphogenetic Protein (BMP) signaling fine-tunes the behaviors of endothelium in health and disease, how BMP signaling influences the proliferation of endothelium and therefore, modulates angiogenesis remains largely unknown. Here, we evaluated the role of Activin A Type I Receptor (ACVR1/ALK2), a key BMP receptor in the endothelium, in modulating the proliferation of endothelial cells.

View Article and Find Full Text PDF
Article Synopsis
  • - Macrophages are vital for maintaining specific functions and balance in the adrenal gland, particularly in regulating aldosterone production through their interactions with blood vessels.
  • - The study reveals that the absence of the molecule VEGF-A in macrophages leads to changes in blood vessel structure, resulting in increased aldosterone secretion and associated health issues like high blood pressure.
  • - Findings suggest that the communication between macrophages and endothelial cells is crucial for adrenal health and could have significant implications for understanding similar processes in other endocrine organs.
View Article and Find Full Text PDF

Notch signaling guides vascular development and function by regulating diverse endothelial cell behaviors, including migration, proliferation, vascular density, endothelial junctions, and polarization in response to flow. Notch proteins form transcriptional activation complexes that regulate endothelial gene expression, but few of the downstream effectors that enable these phenotypic changes have been characterized in endothelial cells, limiting our understanding of vascular Notch activities. Using an unbiased screen of translated mRNA rapidly regulated by Notch signaling, we identified novel in vivo targets of Notch signaling in neonatal mouse brain endothelium, including UNC5B, a member of the netrin family of angiogenic-regulatory receptors.

View Article and Find Full Text PDF

The development of the vascular system is crucial in supporting the growth and health of all other organs in the body, and vascular system dysfunction is the major cause of human morbidity and mortality. This chapter discusses three successive processes that govern vascular system development, starting with the differentiation of the primitive vascular system in early embryonic development, followed by its remodeling into a functional circulatory system composed of arteries and veins, and its final maturation and acquisition of an organ specific semi-permeable barrier that controls nutrient uptake into tissues and hence controls organ physiology. Along these steps, endothelial cells forming the inner lining of all blood vessels acquire extensive heterogeneity in terms of gene expression patterns and function, that we are only beginning to understand.

View Article and Find Full Text PDF

Meningeal lymphatic vessels (MLVs) promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelial growth factor-C (VEGF-C) regulates MLV development and maintenance and has therapeutic potential for treating neurological disorders. Herein, we investigated the effects of VEGF-C overexpression on brain fluid drainage and ischemic stroke outcomes in mice.

View Article and Find Full Text PDF

In the adult bone marrow (BM), endothelial cells (ECs) are an integral component of the hematopoietic stem cell (HSC)-supportive niche, which modulates HSC activity by producing secreted and membrane-bound paracrine signals. Within the BM, distinct vascular arteriole, transitional, and sinusoidal EC subtypes display unique paracrine expression profiles and create anatomically-discrete microenvironments. However, the relative contributions of vascular endothelial subtypes in supporting hematopoiesis is unclear.

View Article and Find Full Text PDF

The eye, an anatomical extension of the central nervous system (CNS), exhibits many molecular and cellular parallels to the brain. Emerging research demonstrates that changes in the brain are often reflected in the eye, particularly in the retina. Still, the possibility of an immunological nexus between the posterior eye and the rest of the CNS tissues remains unexplored.

View Article and Find Full Text PDF

Background: Recently shown to regulate cardiac development, the secreted axon guidance molecule SLIT3 maintains its expression in the postnatal heart. Despite its known expression in the cardiovascular system after birth, SLIT3's relevance to cardiovascular function in the postnatal state remains unknown. As such, the objectives of this study were to determine the postnatal myocardial sources of SLIT3 and to evaluate its functional role in regulating the cardiac response to pressure overload stress.

View Article and Find Full Text PDF

Background: Lymphatic vessels are responsible for tissue drainage, and their malfunction is associated with chronic diseases. Lymph uptake occurs via specialized open cell-cell junctions between capillary lymphatic endothelial cells (LECs), whereas closed junctions in collecting LECs prevent lymph leakage. LEC junctions are known to dynamically remodel in development and disease, but how lymphatic permeability is regulated remains poorly understood.

View Article and Find Full Text PDF

Unlabelled: Meningeal lymphatic vessels promote tissue clearance and immune surveillance in the central nervous system (CNS). Vascular endothelium growth factor-C (VEGF-C) is essential for meningeal lymphatic development and maintenance and has therapeutic potential for treating neurological disorders, including ischemic stroke. We have investigated the effects of VEGF-C overexpression on brain fluid drainage, single cell transcriptome in the brain, and stroke outcomes in adult mice.

View Article and Find Full Text PDF

Glioblastoma (GBM) is the most common and fatal primary tumor of the central nervous system (CNS) and current treatments have limited success. Chemokine signaling regulates both malignant cells and stromal cells of the tumor microenvironment (TME), constituting a potential therapeutic target against brain cancers. Here, we investigated the C-C chemokine receptor type 7 (CCR7) and the chemokine (C-C-motif) ligand 21 (CCL21) for their expression and function in human GBM and then assessed their therapeutic potential in preclinical mouse GBM models.

View Article and Find Full Text PDF

Low-density lipoprotein (LDL) accumulation in the arterial wall contributes to atherosclerosis initiation and progression. Activin A receptor-like type 1 (ACVRL1, called activin-like kinase receptor (ALK1)) is a recently identified receptor that mediates LDL entry and transcytosis in endothelial cells (ECs). However, the role of this pathway in vivo is not yet known.

View Article and Find Full Text PDF

The subventricular zone (SVZ) is the largest neural stem cell (NSC) niche in the adult brain; herein, the blood-brain barrier is leaky, allowing direct interactions between NSCs and endothelial cells (ECs). Mechanisms by which direct NSC-EC interactions in the adult SVZ control NSC behavior are unclear. We found that Cx43 is highly expressed by SVZ NSCs and ECs, and its deletion in either leads to increased NSC proliferation and neuroblast generation, suggesting that Cx43-mediated NSC-EC interactions maintain NSC quiescence.

View Article and Find Full Text PDF

Background: The blood brain barrier (BBB) preserves neuronal function in the central nervous system (CNS) by tightly controlling metabolite exchanges with the blood. In the eye, the retina is likewise protected by the blood-retina barrier (BRB) to maintain phototransduction. We showed that the secreted guidance cue Netrin-1 regulated BBB integrity, by binding to endothelial Unc5B and regulating canonical β-catenin dependent expression of BBB gene expression.

View Article and Find Full Text PDF

Although mitochondrial activity is critical for angiogenesis, its mechanism is not entirely clear. Here we show that mice with endothelial deficiency of any one of the three nuclear genes encoding for mitochondrial proteins, transcriptional factor (TFAM), respiratory complex IV component (COX10), or redox protein thioredoxin 2 (TRX2), exhibit retarded retinal vessel growth and arteriovenous malformations (AVM). Single-cell RNA-seq analyses indicate that retinal ECs from the three mutant mice have increased TGFβ signaling and altered gene expressions associated with vascular maturation and extracellular matrix, correlating with vascular malformation and increased basement membrane thickening in microvesels of mutant retinas.

View Article and Find Full Text PDF