Publications by authors named "Anne E Tindale"

The csbX gene of Azotobacter vinelandii was regulated in an iron-repressible manner from a divergent promoter upstream of the catecholate siderophore biosynthesis (csb) operon and was predicted to encode an efflux pump of the major facilitator superfamily. Other proteins that were most similar to CsbX were encoded by genes found in the catecholate siderophore biosynthesis operons of Aeromonas hydrophila and Stigmatella aurantiaca. Inactivation of csbX resulted in 57-100% decrease in the amount of catecholates released when compared to the wild-type in iron-limited medium.

View Article and Find Full Text PDF

Azotobacter vinelandii strain UA22 was produced by pTn5luxAB mutagenesis, such that the promoterless luxAB genes were transcribed in an iron-repressible manner. Tn5luxAB was localized to a fragment of chromosomal DNA encoding the thrS, infC, rpmI, rplT, pheS and pheT genes, with Tn5 inserted in the 3'-end of pheS. The isolation of this mutation in an essential gene was possible because of polyploidy in Azotobacter, such that strain UA22 carried both wild-type and mutant alleles of pheS.

View Article and Find Full Text PDF

Azotobacter vinelandii forms both catecholate and azotobactin siderophores during iron-limited growth. Azotobactin is repressed by about 3 microM iron, but catecholate siderophore synthesis continues up to a maximum of 10 microM iron. This suggests that catecholate siderophore synthesis is regulated by other factors in addition to the ferric uptake repressor (Fur).

View Article and Find Full Text PDF