Publications by authors named "Anne E Perring"

Pyrocumulonimbus (pyroCb) firestorm systems have been shown to inject significant amounts of black carbon (BC) to the stratosphere with a residence time of several months. Injected BC warms the local stratospheric air, consequently perturbing transport and hence spatial distributions of ozone and water vapor. A distinguishing feature of BC-containing particles residing within pyroCb smoke is their thick surface coatings made of condensed organic matter.

View Article and Find Full Text PDF

Biomass burning particulate matter (BBPM) affects regional air quality and global climate, with impacts expected to continue to grow over the coming years. We show that studies of North American fires have a systematic altitude dependence in measured BBPM normalized excess mixing ratio (NEMR; ΔPM/ΔCO), with airborne and high-altitude studies showing a factor of 2 higher NEMR than ground-based measurements. We report direct airborne measurements of BBPM volatility that partially explain the difference in the BBPM NEMR observed across platforms.

View Article and Find Full Text PDF

Aerosol mass extinction efficiency (MEE) is a key aerosol property used to connect aerosol optical properties with aerosol mass concentrations. Using measurements of smoke obtained during the Fire Influence on Regional to Global Environments and Air Quality (FIREX-AQ) campaign we find that mid-visible smoke MEE can change by a factor of 2-3 between fresh smoke (<2 hr old) and one-day-old smoke. While increases in aerosol size partially explain this trend, changes in the real part of the aerosol refractive index (real(n)) are necessary to provide closure assuming Mie theory.

View Article and Find Full Text PDF

We investigated the changes in the size distribution, coating thickness, and mass absorption cross-section (MAC) of black carbon (BC) with aging and estimated the light absorption enhancement (E) in the Asian outflow from airborne in-situ measurements during 2016 KORUS-AQ campaign. The BC number concentration decreased, but mass mean diameter increased with increasing altitude in the West Coast (WC) and Seoul Metropolitan Area (SMA), reflecting the contrast between freshly emitted BC-containing particles at the surface and more aged aerosol associated with aggregation during vertical mixing and transport. Contradistinctively, BC number and mass size distributions were relatively invariant with altitude over the Yellow Sea (YS) because sufficiently aged BC from eastern China were horizontally transported to all altitudes over the YS, and there are no significant sources at the surface.

View Article and Find Full Text PDF

The Rim Fire of 2013, the third largest area burned by fire recorded in California history, is simulated by a climate model coupled with a size-resolved aerosol model. Modeled aerosol mass, number, and particle size distribution are within variability of data obtained from multiple-airborne in situ measurements. Simulations suggest that Rim Fire smoke may block 4-6% of sunlight energy reaching the surface, with a dimming efficiency around 120-150 W m per unit aerosol optical depth in the midvisible at 13:00-15:00 local time.

View Article and Find Full Text PDF

Secondary organic aerosol (SOA) resulting from the oxidation of organic species emitted by the Deepwater Horizon oil spill were sampled during two survey flights conducted by a National Oceanic and Atmospheric Administration WP-3D aircraft in June 2010. A new technique for fast measurements of cloud condensation nuclei (CCN) supersaturation spectra called Scanning Flow CCN Analysis was deployed for the first time on an airborne platform. Retrieved CCN spectra show that most particles act as CCN above (0.

View Article and Find Full Text PDF

During the Deepwater Horizon (DWH) oil spill, a wide range of gas and aerosol species were measured from an aircraft around, downwind, and away from the DWH site. Additional hydrocarbon measurements were made from ships in the vicinity. Aerosol particles of respirable sizes were on occasions a significant air quality issue for populated areas along the Gulf Coast.

View Article and Find Full Text PDF

We present a statistical representation of the aggregate effects of deep convection on the chemistry and dynamics of the upper troposphere (UT) based on direct aircraft observations of the chemical composition of the UT over the eastern United States and Canada during summer. These measurements provide unique observational constraints on the chemistry occurring downwind of convection and the rate at which air in the UT is recycled. These results provide quantitative measures that can be used to evaluate global climate and chemistry models.

View Article and Find Full Text PDF