Publications by authors named "Anne E Mayer"

Chemical synthesis of conjugate vaccines, consisting of a polysaccharide linked to a protein, can be technically challenging, and in vivo bacterial conjugations (bioconjugations) have emerged as manufacturing alternatives. Bioconjugation relies upon an oligosaccharyltransferase to attach polysaccharides to proteins, but currently employed enzymes are not suitable for the generation of conjugate vaccines when the polysaccharides contain glucose at the reducing end, which is the case for ~75% of Streptococcus pneumoniae capsules. Here, we use an O-linking oligosaccharyltransferase to generate a polyvalent pneumococcal bioconjugate vaccine with polysaccharides containing glucose at their reducing end.

View Article and Find Full Text PDF

The genus contains important human pathogens, but the role of host pathways in norovirus replication is largely unknown. Murine noroviruses provide the opportunity to study norovirus replication in cell culture and in small animals. The human norovirus nonstructural protein NS1/2 interacts with the host protein VAMP-associated protein A (VAPA), but the significance of the NS1/2-VAPA interaction is unexplored.

View Article and Find Full Text PDF

Inflammatory bowel disease (IBD) is associated with risk variants in the human genome and dysbiosis of the gut microbiome, though unifying principles for these findings remain largely undescribed. The human commensal Bacteroides fragilis delivers immunomodulatory molecules to immune cells via secretion of outer membrane vesicles (OMVs). We reveal that OMVs require IBD-associated genes, ATG16L1 and NOD2, to activate a noncanonical autophagy pathway during protection from colitis.

View Article and Find Full Text PDF

Pregnant women in the third trimester are at increased risk of severe influenza disease relative to the general population, though mechanisms behind this are not completely understood. The immune response to influenza infection employs both complement (C') and antibody (Ab). The relative contributions of these components to the anti-viral response are difficult to dissect because most humans have pre-existing influenza-specific Abs.

View Article and Find Full Text PDF

The African Green Monkey (AGM) model was used to analyze the role of complement in neutralization of parainfluenza virus. Parainfluenza virus 5 (PIV5) and human parainfluenza virus type 2 were effectively neutralized in vitro by naïve AGM sera, but neutralizing capacity was lost by heat-inactivation. The mechanism of neutralization involved formation of massive aggregates, with no evidence of virion lysis.

View Article and Find Full Text PDF

Macrophages are an important cell type for regulation of immunity, and can play key roles in virus pathogenesis. Here we address the effect of infection of primary human macrophages with the related paramyxoviruses Parainfluenza virus 5 (PIV5) and Mumps virus (MuV). Monocyte-derived macrophages infected with PIV5 or MuV showed very little cytopathic effect, but were found to be defective in migration toward a gradient of chemokines such as macrophage colony stimulating factor (MCSF) and vascular endothelial growth factor (VEGF).

View Article and Find Full Text PDF

During 2009, 616 bats representing at least 22 species were collected from 10 locations throughout Kenya. A new lyssavirus, named Shimoni bat virus (SHIBV), was isolated from the brain of a dead Commerson's leaf-nosed bat (Hipposideros commersoni), found in a cave in the coastal region of Kenya. Genetic distances and phylogenetic reconstructions, implemented for each gene and for the concatenated alignment of all five structural genes (N, P, M, G and L), demonstrated that SHIBV cannot be identified with any of the existing species, but rather should be considered an independent species within phylogroup II of the Lyssavirus genus, most similar to Lagos bat virus (LBV).

View Article and Find Full Text PDF

The immune response elicited by LC16m8, a candidate smallpox vaccine that was developed in Japan by cold selection during serial passage of the Lister vaccine virus in primary rabbit kidney cells, was compared to Dryvax in a mouse model. LC16m8 carries a mutation resulting in the truncation of the B5 protein, an important neutralizing target of the extracellular envelope form of vaccinia virus (EV). LC16m8 elicited a broad-spectrum immunoglobulin G (IgG) response that neutralized both EV and the intracellular mature form of vaccinia virus and provoked cell-mediated immune responses, including the activation of CD4+ and CD8+ cells, similarly to Dryvax.

View Article and Find Full Text PDF

Cultivation methods are commonly used in Salmonella surveillance systems and outbreak investigations, and consequently, conclusions about Salmonella evolution and transmission are highly dependent on the performance characteristics of these methods. Past studies have shown that Salmonella serotypes can exhibit different growth characteristics in the same enrichment and selective media. This could lead not only to biased conclusions about the dominant strain present in a sample with mixed Salmonella populations, but also to a low sensitivity for detecting a Salmonella strain in a sample with only a single strain present.

View Article and Find Full Text PDF

The licensed smallpox vaccine Dryvax is used as the standard in comparative immunogenicity and protection studies of new smallpox vaccine candidates. Although the correlates of protection against smallpox are unknown, recent studies have shown that a humoral response against the intracellular mature virion and extracellular enveloped virion (EV) forms of vaccinia virus is crucial for protection. Using a recombinant Semliki Forest virus (rSFV) vector system, we expressed a set of full-length EV proteins for the development of EV antigen-specific enzyme-linked immunosorbent assays (ELISAs) and the production of monospecific antisera.

View Article and Find Full Text PDF

Significant adverse events are associated with vaccination with the currently licensed smallpox vaccine. Candidate new-generation smallpox vaccines such as the replication-defective modified vaccinia virus Ankara (MVA) produce very few adverse events in experimental animals and in limited human clinical trials conducted near the end of the smallpox eradication campaign. Efficacy evaluation of such new-generation vaccines will be extraordinarily complex, however, since the eradication of smallpox precludes a clinical efficacy trial and the correlates of protection against smallpox are unknown.

View Article and Find Full Text PDF