Publications by authors named "Anne Daebeler"

Despite covering <5% of Earth's terrestrial area, peatlands are crucial for global carbon storage and are hot spots of methane cycling. This study examined the dynamics of aerobic and anaerobic methane oxidation in two undisturbed peatlands: a fen and a spruce swamp forest. Using microcosm incubations, we investigated the effect of ammonium addition, at a level similar to current N pollution processes, on aerobic methane oxidation.

View Article and Find Full Text PDF

Genome-scale metabolic models (GEMs) are valuable tools serving systems biology and metabolic engineering. However, GEMs are still an underestimated tool in informing microbial ecology. Since their first application for aerobic gammaproteobacterial methane oxidizers less than a decade ago, GEMs have substantially increased our understanding of the metabolism of methanotrophs, a microbial guild of high relevance for the natural and biotechnological mitigation of methane efflux to the atmosphere.

View Article and Find Full Text PDF

Here we introduce draft genomes of three methanotrophs belonging to the a family of typically fast-growing methane oxidizers. sp. Wu1, sp.

View Article and Find Full Text PDF

Nitrospirales, including the genus Nitrospira, are environmentally widespread chemolithoautotrophic nitrite-oxidizing bacteria. These mostly uncultured microorganisms gain energy through nitrite oxidation, fix CO, and thus play vital roles in nitrogen and carbon cycling. Over the last decade, our understanding of their physiology has advanced through several new discoveries, such as alternative energy metabolisms and complete ammonia oxidizers (comammox Nitrospira).

View Article and Find Full Text PDF

Aerobic nitrification is a key process in the global nitrogen cycle mediated by microorganisms. While nitrification has primarily been studied in near-neutral environments, this process occurs at a wide range of pH values, spanning ecosystems from acidic soils to soda lakes. Aerobic nitrification primarily occurs through the activities of ammonia-oxidising bacteria and archaea, nitrite-oxidising bacteria, and complete ammonia-oxidising (comammox) bacteria adapted to these environments.

View Article and Find Full Text PDF

Nitrite-oxidizing bacteria (NOB) catalyse the second nitrification step and are the main biological source of nitrate. The most diverse and widespread NOB genus is Nitrospira, which also contains complete ammonia oxidizers (comammox) that oxidize ammonia to nitrate. To date, little is known about the occurrence and biology of comammox and canonical nitrite oxidizing Nitrospira in extremely alkaline environments.

View Article and Find Full Text PDF

Chemolithoautotrophic nitrite-oxidising bacteria (NOB) of the genus Nitrospira contribute to nitrification in diverse natural environments and engineered systems. Nitrospira are thought to be well-adapted to substrate limitation owing to their high affinity for nitrite and capacity to use alternative energy sources. Here, we demonstrate that the canonical nitrite oxidiser Nitrospira moscoviensis oxidises hydrogen (H) below atmospheric levels using a high-affinity group 2a nickel-iron hydrogenase [K = 32 nM].

View Article and Find Full Text PDF

Nitrite-oxidizing bacteria of the genus Nitrospira are key players of the biogeochemical nitrogen cycle. However, little is known about their occurrence and survival strategies in extreme pH environments. Here, we report on the discovery of physiologically versatile, haloalkalitolerant Nitrospira that drive nitrite oxidation at exceptionally high pH.

View Article and Find Full Text PDF

Nitrification is a key process of the biogeochemical nitrogen cycle and of biological wastewater treatment. The second step, nitrite oxidation to nitrate, is catalyzed by phylogenetically diverse, chemolithoautotrophic nitrite-oxidizing bacteria (NOB). Uncultured NOB from the genus " Nitrotoga" are widespread in natural and engineered ecosystems.

View Article and Find Full Text PDF

Ammonia-oxidizing archaea (AOA) within the phylum Thaumarchaeota are the only known aerobic ammonia oxidizers in geothermal environments. Although molecular data indicate the presence of phylogenetically diverse AOA from the clade, group 1.1b and group 1.

View Article and Find Full Text PDF
Article Synopsis
  • Nitrification is an essential process in the nitrogen cycle where ammonia is oxidized to nitrate, historically attributed to different groups of bacteria and archaea.
  • Recent findings have identified a type of bacterium called Nitrospira inopinata, which can perform the entire ammonia to nitrate conversion independently, challenging previous notions about competition among nitrifying organisms.
  • Research shows that Nitrospira inopinata is well-adapted to low-nutrient environments, exhibiting high ammonia affinity and growth yield, suggesting its significant role in nitrification under oligotrophic conditions.
View Article and Find Full Text PDF

Nitrification, the oxidation of ammonia via nitrite to nitrate, has always been considered to be catalyzed by the concerted activity of ammonia- and nitrite-oxidizing microorganisms. Only recently, complete ammonia oxidizers ("comammox"), which oxidize ammonia to nitrate on their own, were identified in the bacterial genus , previously assumed to contain only canonical nitrite oxidizers. are widespread in nature, but for assessments of the distribution and functional importance of comammox in ecosystems, cultivation-independent tools to distinguish comammox from strictly nitrite-oxidizing are required.

View Article and Find Full Text PDF

Microbial interaction is an integral component of microbial ecology studies, yet the role, extent, and relevance of microbial interaction in community functioning remains unclear, particularly in the context of global biogeochemical cycles. While many studies have shed light on the physico-chemical cues affecting specific processes, (micro)biotic controls and interactions potentially steering microbial communities leading to altered functioning are less known. Yet, recent accumulating evidence suggests that the concerted actions of a community can be significantly different from the combined effects of individual microorganisms, giving rise to emergent properties.

View Article and Find Full Text PDF

The first step of nitrification is carried out by ammonia-oxidizing bacteria (AOB) and archaea (AOA). It is largely unknown, by which mechanisms these microbes are capable of coexistence and how their respective contribution to ammonia oxidation may differ with varying soil characteristics. To determine how different levels of ammonium availability influence the extent of archaeal and bacterial contributions to ammonia oxidation, microcosm incubations with controlled ammonium levels were conducted.

View Article and Find Full Text PDF

Ammonium/ammonia is the sole energy substrate of ammonia oxidizers, and is also an essential nitrogen source for other microorganisms. Ammonia oxidizers therefore must compete with other soil microorganisms such as methane-oxidizing bacteria (MOB) in terrestrial ecosystems when ammonium concentrations are limiting. Here we report on the interactions between nitrifying communities dominated by ammonia-oxidizing archaea (AOA) and Nitrospira-like nitrite-oxidizing bacteria (NOB), and communities of MOB in controlled microcosm experiments with two levels of ammonium and methane availability.

View Article and Find Full Text PDF

The metabolic pathways of methane formation vary with environmental conditions, but whether this can also be linked to changes in the active archaeal community structure remains uncertain. Here, we show that the suppression of aceticlastic methanogenesis by methyl fluoride (CH(3)F) caused surprisingly little differences in community composition of active methanogenic archaea from a rice field soil. By measuring the natural abundances of carbon isotopes we found that the effective dose for a 90% inhibition of aceticlastic methanogenesis in anoxic paddy soil incubations was <0.

View Article and Find Full Text PDF

The contribution of ammonia-oxidizing bacteria and archaea (AOB and AOA, respectively) to the net oxidation of ammonia varies greatly between terrestrial environments. To better understand, predict and possibly manage terrestrial nitrogen turnover, we need to develop a conceptual understanding of ammonia oxidation as a function of environmental conditions including the ecophysiology of associated organisms. We examined the discrete and combined effects of mineral nitrogen deposition and geothermal heating on ammonia-oxidizing communities by sampling soils from a long-term fertilization site along a temperature gradient in Icelandic grasslands.

View Article and Find Full Text PDF