We appreciate the detailed review provided by Magge et al1 of our article, "Deep learning for pharmacovigilance: recurrent neural network architectures for labeling adverse drug reactions in Twitter posts." 2 In their letter, they present a subjective criticism that rests on concerns about our dataset composition and potential misinterpretation of comparisons to existing methods. Our article underwent two rounds of extensive peer review and has been cited 28 times1 in the nearly 2 years since it was published online (February 2017).
View Article and Find Full Text PDFAnnotating unstructured texts in Electronic Health Records data is usually a necessary step for conducting machine learning research on such datasets. Manual annotation by domain experts provides data of the best quality, but has become increasingly impractical given the rapid increase in the volume of EHR data. In this article, we examine the effectiveness of crowdsourcing with unscreened online workers as an alternative for transforming unstructured texts in EHRs into annotated data that are directly usable in supervised learning models.
View Article and Find Full Text PDFObjective: Social media is an important pharmacovigilance data source for adverse drug reaction (ADR) identification. Human review of social media data is infeasible due to data quantity, thus natural language processing techniques are necessary. Social media includes informal vocabulary and irregular grammar, which challenge natural language processing methods.
View Article and Find Full Text PDF