Publications by authors named "Anne Charlet"

The eukaryotic initiation factor 4E binding protein (4E-BP) family is involved in translational control of cell proliferation and pro-angiogenic factors. The zebrafish eukaryotic initiation factor 4E binding protein 3 like () is a member of the 4E-BPs and responsible for activity-dependent myofibrillogenesis, but whether it affects cardiomyocyte (CM) proliferation or heart regeneration is unclear. We examined during zebrafish vascular development and heart regeneration post cryoinjury in adult zebrafish.

View Article and Find Full Text PDF

FLT3-ITD is the most predominant mutation in AML being expressed in about one-third of AML patients and is associated with a poor prognosis. Efforts to better understand FLT3-ITD downstream signaling to possibly improve therapy response are needed. We have previously described FLT3-ITD-dependent phosphorylation of CSF2RB, the common receptor beta chain of IL-3, IL-5, and GM-CSF, and therefore examined its significance for FLT3-ITD-dependent oncogenic signaling and transformation.

View Article and Find Full Text PDF

An important limitation of FLT3 tyrosine kinase inhibitors (TKIs) in FLT3-ITD positive AML is the development of resistance. To better understand resistance to FLT3 inhibition, we examined FLT3-ITD positive cell lines which had acquired resistance to midostaurin or sorafenib. In 6 out of 23 TKI resistant cell lines we were able to detect a JAK1 V658F mutation, a mutation that led to reactivation of the CSF2RB-STAT5 pathway.

View Article and Find Full Text PDF

FLT3-ITD tyrosine kinase inhibitors (TKI) show limited clinical activity in acute myeloid leukemia (AML) due to emerging resistance. TKI resistance is mediated by secondary FLT3-ITD mutations only in a minority of cases. We hypothesize that the cytokine CCL5 protects AML cells from TKI-mediated cell death and contributes to treatment resistance.

View Article and Find Full Text PDF

The bone morphogenetic protein (BMP) signaling pathway plays a central role during vasculature development. Mutations or dysregulation of the BMP pathway members have been linked to arteriovenous malformations. In the present study, we investigated the effect of the BMP modulators bone morphogenetic protein endothelial precursor-derived regulator (BMPER) and twisted gastrulation protein homolog 1 (TWSG1) on arteriovenous specification during zebrafish development and analyzed downstream Notch signaling pathway in human endothelial cells.

View Article and Find Full Text PDF

Rationale: Regarding branching morphogenesis, neurogenesis and angiogenesis share common principle mechanisms and make use of the same molecules. Therefore, the investigation of neuronal molecules involved in vascular morphogenesis provides new possibilities for pro-angiogenic approaches in cardiovascular diseases.

Objective: In this study, we investigated the role of the neuronal transcription factor NPAS4 in angiogenesis.

View Article and Find Full Text PDF

High platelet reactivity (HPR) after P2Y12-inhibition in patients undergoing coronary stenting is associated with an increased risk for thromboembolic events and coronary death. So far it is not known how HPR affects the clinical outcome of different treatment strategies in patients with atrial fibrillation (AF) undergoing coronary stenting. In this single centre, observational study the antiplatelet effect of P2Y12-inhibitors in AF patients undergoing coronary stenting was investigated using impedance aggregometry.

View Article and Find Full Text PDF

Growth and regeneration of blood vessels are crucial processes during embryonic development and in adult disease. Members of the bone morphogenetic protein (BMP) family are growth factors known to play a key role in vascular development. The BMP pathway is controlled by extracellular BMP modulators such as BMP endothelial cell precursor derived regulator (BMPER), which we reported previously acts proangiogenically on endothelial cells in a concentration-dependent manner.

View Article and Find Full Text PDF