The 7SK small nuclear RNA (7SKsnRNA) plays a key role in the regulation of RNA polymerase II by sequestrating and inhibiting the positive transcription elongation factor b (P-TEFb) in the 7SK ribonucleoprotein complex (7SKsnRNP), a process mediated by interaction with the protein HEXIM. P-TEFb is also an essential cellular factor recruited by the viral protein Tat to ensure the replication of the viral RNA in the infection cycle of the human immunodeficiency virus (HIV-1). Tat promotes the release of P-TEFb from the 7SKsnRNP and subsequent activation of transcription, by displacing HEXIM from the 5'-hairpin of the 7SKsnRNA.
View Article and Find Full Text PDFThe La-related proteins (LaRPs) are a superfamily of eukaryotic RNA-binding proteins with important and varied roles. To understand LaRP functions it is essential to unravel the divergent features responsible for their RNA target selectivity, which underlie their distinct identities and cellular roles. LaRPs are built on a common structural module called the 'La-module' that acts as a main locus for RNA recognition.
View Article and Find Full Text PDFThe La-related protein 7 (LARP7) forms a complex with the nuclear 7SK RNA to regulate RNA polymerase II transcription. It has been implicated in cancer and the Alazami syndrome, a severe developmental disorder. Here, we report a so far unknown role of this protein in RNA modification.
View Article and Find Full Text PDFThe La-related proteins (LaRPs) are an ancient superfamily of RNA-binding proteins orchestrating the major fates of RNA, from processing and maturation to regulation of mRNA translation. LaRPs are instrumental in modulating complex assemblies where the RNA is bound, folded, processed, escorted and presented to the functional effectors often through recruitment of protein partners. This intricate web of protein-RNA and protein-protein interactions is enabled by the modular nature of the LaRPs, comprising several structured domains connected by flexible linkers, and other sequences lacking recognizable folded motifs.
View Article and Find Full Text PDF7SK RNA, as part of the 7SK ribonucleoprotein complex, is crucial to the regulation of transcription by RNA-polymerase II, via its interaction with the positive transcription elongation factor P-TEFb. The interaction is induced by binding of the protein HEXIM to the 5' hairpin (HP1) of 7SK RNA. Four distinct structural models have been obtained experimentally for HP1.
View Article and Find Full Text PDFBiochim Biophys Acta Gene Regul Mech
March 2018
Non-coding RNAs (ncRNAs) transcribed from the promoter and the downstream region can affect the expression of the corresponding coding genes. It has been shown that sense-directed ncRNAs arising from the promoter region of the E-cadherin gene (CDH1) mediate its repression. Here, we show that an antisense-directed ncRNA (paRCDH1-AS) transcribed from the CDH1 promoter is necessary for its expression.
View Article and Find Full Text PDFThe small nuclear 7SK RNA regulates RNA polymerase II (RNA Pol II) transcription, by sequestering and inhibiting the positive transcription elongation factor b (P-TEFb). P-TEFb is stored in the 7SK ribonucleoprotein (RNP) that contains the three nuclear proteins Hexim1, LaRP7, and MePCE. P-TEFb interacts with the protein Hexim1 and the 7SK RNA.
View Article and Find Full Text PDFGlycyl tRNA synthetase (GlyRS) provides a unique case among class II aminoacyl tRNA synthetases, with two clearly widespread types of enzymes: a dimeric (α2) species present in some bacteria, archaea, and eukaryotes; and a heterotetrameric form (α2β2) present in most bacteria. Although the differences between both types of GlyRS at the anticodon binding domain level are evident, the extent and implications of the variations in the catalytic domain have not been described, and it is unclear whether the mechanism of amino acid recognition is also dissimilar. Here, we show that the α-subunit of the α2β2 GlyRS from the bacterium Aquifex aeolicus is able to perform the first step of the aminoacylation reaction, which involves the activation of the amino acid with ATP.
View Article and Find Full Text PDFA 7SKsnRNP complex, comprising the non-coding RNA 7SK and proteins MePCE and LARP7, participates in the regulation of the transcription elongation by RNA-polymerase II in higher eukaryotes. Binding of a HEXIM protein triggers the inhibition of the kinase complex P-TEFb, a key actor of the switch from paused transcription to elongation. The present paper reviews what is known about the specific recognition of the 7SK RNA by the HEXIM protein.
View Article and Find Full Text PDFThe non-coding RNA 7SK is the scaffold for a small nuclear ribonucleoprotein (7SKsnRNP) which regulates the function of the positive transcription elongation factor P-TEFb in the control of RNA polymerase II elongation in metazoans. The La-related protein LARP7 is a component of the 7SKsnRNP required for stability and function of the RNA. To address the function of LARP7 we determined the crystal structure of its La module, which binds a stretch of uridines at the 3'-end of 7SK.
View Article and Find Full Text PDFWe propose a novel fragment assembly method for low-resolution modeling of RNA and show how it may be used along with small-angle X-ray solution scattering (SAXS) data to model low-resolution structures of particles having as many as 12 independent secondary structure elements. We assessed this model-building procedure by using both artificial data on a previously proposed benchmark and publicly available data. With the artificial data, SAXS-guided models show better similarity to native structures than ROSETTA decoys.
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
June 2013
In the course of a crystallographic study of a 132 nt variant of Aquifex aeolicus 6S RNA, a crystal structure of an A-form RNA duplex containing 12 base pairs was solved at a resolution of 2.6 Å. In fact, the RNA duplex is part of the 6S RNA and was obtained by accidental but precise degradation of the 6S RNA in a crystallization droplet.
View Article and Find Full Text PDF7SK snRNA, an abundant RNA discovered in human nucleus, regulates transcription by RNA polymerase II (RNAPII). It sequesters and inhibits the transcription elongation factor P-TEFb which, by phosphorylation of RNAPII, switches transcription from initiation to processive elongation and relieves pauses of transcription. This regulation process depends on the association between 7SK and a HEXIM protein, neither isolated partner being able to inhibit P-TEFb alone.
View Article and Find Full Text PDFJ Mol Biol
November 2009
In protein synthesis, threonyl-tRNA synthetase (ThrRS) must recognize threonine (Thr) from the 20 kinds of amino acids and the cognate tRNA(Thr) from different tRNAs in order to generate Thr-tRNA(Thr). In general, an organism possesses one kind of gene corresponding to ThrRS. However, it has been recently found that some organisms have two different genes for ThrRS in the genome, suggesting that their proteins ThrRS-1 and ThrRS-2 function separately and complement each other in the threonylation of tRNA(Thr), one for catalysis and the other for trans-editing of misacylated Ser-tRNA(Thr).
View Article and Find Full Text PDFActa Crystallogr Sect F Struct Biol Cryst Commun
October 2008
Threonyl-tRNA synthetase (ThrRS) plays an essential role in protein synthesis by catalyzing the aminoacylation of tRNA(Thr) and editing misacylation. ThrRS generally contains an N-terminal editing domain, a catalytic domain and an anticodon-binding domain. The sequences of the editing domain in ThrRSs from archaea differ from those in bacteria and eukaryotes.
View Article and Find Full Text PDFTo ensure a high fidelity during translation, threonyl-tRNA synthetases (ThrRSs) harbor an editing domain that removes noncognate L-serine attached to tRNAThr. Most archaeal ThrRSs possess a unique editing domain structurally similar to D-aminoacyl-tRNA deacylases (DTDs) found in eubacteria and eukaryotes that specifically removes D-amino acids attached to tRNA. Here, we provide mechanistic insights into the removal of noncognate L-serine from tRNAThr by a DTD-like editing module from Pyrococcus abyssi ThrRS (Pab-NTD).
View Article and Find Full Text PDFThe fidelity of aminoacylation of tRNA(Thr) by the threonyl-tRNA synthetase (ThrRS) requires the discrimination of the cognate substrate threonine from the noncognate serine. Misacylation by serine is corrected in a proofreading or editing step. An editing site has been located 39 A away from the aminoacylation site.
View Article and Find Full Text PDFThe crystal structures of threonyl-tRNA synthetase (ThrRS) from Staphylococcus aureus, with ATP and an analogue of threonyl adenylate, are described. Together with the previously determined structures of Escherichia coli ThrRS with different substrates, they allow a comprehensive analysis of the effect of binding of all the substrates: threonine, ATP and tRNA. The tRNA, by inserting its acceptor arm between the N-terminal domain and the catalytic domain, causes a large rotation of the former.
View Article and Find Full Text PDFIn addition to its role in tRNA aminoacylation, Escherichia coli threonyl-tRNA synthetase is a regulatory protein which binds a site, called the operator, located in the leader of its own mRNA and inhibits translational initiation by competing with ribosome binding. This work shows that the two essential steps of regulation, operator recognition and inhibition of ribosome binding, are performed by different domains of the protein. The catalytic and the C-terminal domain of the protein are involved in binding the two anticodon arm-like structures in the operator whereas the N-terminal domain of the enzyme is responsible for the competition with the ribosome.
View Article and Find Full Text PDFEscherichia coli threonyl-tRNA synthetase (ThrRS) represses the translation of its own messenger RNA by binding to an operator located upstream of the initiation codon. The crystal structure of the complex between the core of ThrRS and the essential domain of the operator shows that the mRNA uses the recognition mode of the tRNA anticodon loop to initiate binding. The final positioning of the operator, upon which the control mechanism is based, relies on a characteristic RNA motif adapted to the enzyme surface.
View Article and Find Full Text PDF