Publications by authors named "Anne Cantereau"

Autism spectrum disorders (ASDs) are defined as a set of neurodevelopmental disorders and a lifelong condition. In mice, most of the studies focused on the developmental aspects of these diseases. In this paper, we examined the evolution of motor stereotypies through adulthood in the Shank3 mouse model of ASD, and their underlying striatal alterations, at 10 weeks, 20 weeks, and 40 weeks.

View Article and Find Full Text PDF

Trikafta, currently the leading therapeutic in cystic fibrosis (CF), has demonstrated a real clinical benefit. This treatment is the triple combination therapy of two folding correctors elexacaftor/tezacaftor (VX445/VX661) plus the gating potentiator ivacaftor (VX770). In this study, our aim was to compare the properties of F508del-CFTR in cells treated with either lumacaftor (VX809), tezacaftor, elexacaftor, elexacaftor/tezacaftor with or without ivacaftor.

View Article and Find Full Text PDF

Actin microfilaments (F-actin) are major components of the cytoskeleton essential for many cellular dynamic processes (vesicle trafficking, cytoplasmic streaming, organelle movements). The aim of this study was to examine whether cortical actin microfilaments might be implicated in the regulation of nutrient uptake in root and leaf cells of Beta vulgaris. Using antibodies raised against actin and the AtSUC1 sucrose transporter, immunochemical assays demonstrated that the expression of actin and a sucrose transporter showed different characteristics, when detected on plasma membrane vesicles (PMVs) purified from roots and from leaves.

View Article and Find Full Text PDF

In epithelial cells, the cystic fibrosis transmembrane conductance regulator (CFTR), a cAMP-regulated Cl- channel, plays a key role in water and electrolytes secretion. A dysfunctional CFTR leads to the dehydration of the external environment of the cells and to the production of viscous mucus in the airways of cystic fibrosis patients. Here, we applied the quadriwave lateral shearing interferometry (QWLSI), a quantitative phase imaging technique based on the measurement of the light wave shift when passing through a living sample, to study water transport regulation in human airway epithelial CFBE and CHO cells expressing wild-type, G551D- and F508del-CFTR.

View Article and Find Full Text PDF

Temporin-SHa (SHa) is a small cationic host defence peptide (HDP) produced in skin secretions of the Sahara frog Pelophylax saharicus. This peptide has a broad-spectrum activity, efficiently targeting bacteria, parasites and viruses. Noticeably, SHa has demonstrated an ability to kill Leishmania infantum parasites (amastigotes) within macrophages.

View Article and Find Full Text PDF

Maintaining the equilibrium between saturated and unsaturated fatty acids within membrane phospholipids (PLs) is crucial to sustain the optimal membrane biophysical properties, compatible with selective organelle-based processes. Lipointoxication is a pathological condition under which saturated PLs tend to accumulate within the cell at the expense of unsaturated species, with major impacts on organelle function. Here, we show that human bronchial epithelial cells extracted from lungs of patients with Obstructive Pulmonary Diseases (OPDs), i.

View Article and Find Full Text PDF

Sertoli cells were discovered in the seminiferous tubules by Enrico Sertoli in 1865 (Morgagni 7:31-33, 1865). Intense phagocytosis is, in the context of spermatogenesis cycle, morphologically the most noticeable function of Sertoli cells. In this chapter the major principles of phagocytosis machinery and its specificities in the seminiferous tubules will be briefly reviewed, guidelines of analysis of main phagocytosis steps by confocal and transmission electron microscopy will be described, and a simplified method to assess phagocytosis rate in routine experiments will be given.

View Article and Find Full Text PDF

Phagocytosis and autophagy are typically dedicated to degradation of substrates of extrinsic and intrinsic origins respectively. Although overlaps between phagocytosis and autophagy were reported, the use of autophagy for ingested substrate degradation by nonprofessional phagocytes has not been described. Blood-separated tissues use their tissue-specific nonprofessional phagocytes for homeostatic phagocytosis.

View Article and Find Full Text PDF

Background: Gap junctions are membrane structures composed of connexins (Cx) that allow diffusion of small molecules between cells. They are involved in tissue homeostasis, and various organ dysfunctions have been associated with gap junction defects. To verify their possible involvement in thyroid pathologies, the expression of connexin43 (Cx43), the major Cx in the human thyroid, was evaluated in a variety of diseases including cancer.

View Article and Find Full Text PDF

The neuropeptide Y (NPY) is widely expressed in the central nervous system and has been shown to stimulate neurogenesis in the hippocampus and the olfactory epithelium. Here, we demonstrate that intracerebroventricular injection of NPY stimulates proliferation of neural precursors in the mice subventricular zone (SVZ), one the most neurogenic areas of the brain. Newly generated neuroblasts migrate through the rostral migratory stream to the olfactory bulb and also directly to the striatum, as evidenced by BrdU labelling and cell phenotyping.

View Article and Find Full Text PDF

The present work is aimed at identifying and characterizing, at a molecular and functional level, new ionic conductances potentially involved in the excitation-secretion coupling and proliferation of cardiac ventricular fibroblasts. Among potassium channel transcripts which were screened by high-throughput real-time PCR, SUR2 and Kir6.1 mRNAs were found to be the most abundant in ventricular fibroblasts.

View Article and Find Full Text PDF

The beta(3)-adrenoceptors (beta(3)-ARs) have been identified and characterized in the human heart. Specific beta(3)-AR stimulation, unlike beta(1)-AR or beta(2)-AR stimulation, decreases cardiac contractility, partly via the G(i)-NO pathway. However, the precise role of cardiac beta(3)-ARs is not yet completely understood.

View Article and Find Full Text PDF

Background: In airway epithelial cells, calcium mobilization can be elicited by selective autocrine and/or paracrine activation of apical or basolateral membrane heterotrimeric G protein-coupled receptors linked to phospholipase C (PLC) stimulation, which generates inositol 1,4,5-trisphosphate (IP3) and 1,2-diacylglycerol (DAG) and induces Ca2+ release from endoplasmic reticulum (ER) stores.

Methods: In the present study, we monitored the cytosolic Ca2+ transients using the UV light photolysis technique to uncage caged Ca2+ or caged IP3 into the cytosol of loaded airway epithelial cells of cystic fibrosis (CF) and non-CF origin. We compared in these cells the types of Ca2+ receptors present in the ER, and measured their Ca2+ dependent activity before and after correction of F508del-CFTR abnormal trafficking either by low temperature or by the pharmacological corrector miglustat (N-butyldeoxynojirimycin).

View Article and Find Full Text PDF

ASR proteins (abscissic acid, stress, ripening induced) are involved in plant responses to developmental and environmental signals but their biological functions remain to be elucidated. Grape ASR gene (VvMSA) encodes a new transcription factor regulating the expression of a glucose transporter. Here, we provide evidence for some polymorphism of grape ASRs and their identification as chromosomal non-histone proteins.

View Article and Find Full Text PDF

Sertoli cells provide a controlled microenvironment for regulation and maintenance of spermatogenesis for which an acidic milieu is crucial for male fertility. Sertoli cells also contribute to protection of spermatogenetic cells. Here, we showed that TRPV1 is expressed in rat Sertoli cells and regulates an acid sensing Cl(-) channel (ASCC).

View Article and Find Full Text PDF

Damage to the adult motor cortex leads to severe and frequently irreversible deficits in motor function. Transplantation of embryonic cortical neurons into the damaged adult motor cortex was previously shown to induce partial recovery, but reports on graft efferents have varied from no efferent projections to sparse innervation. Here, we grafted embryonic cortical tissue from transgenic mice overexpressing a green fluorescent protein into the damaged motor cortex of adult mice.

View Article and Find Full Text PDF

Fluoro-Jade B is known as a high affinity fluorescent marker for the localization of neuronal degeneration during acute neuronal distress. However, one study suggested that fluoro-Jade B stains reactive astroglia in the primate cerebral cortex. In this study, we analyzed the staining of fluoro-Jade B alone or combined with specific markers for detection of glial fibrillary acidic protein (GFAP) or activated CD68 microglia in the double APP(SL)/PS1 KI transgenic mice of Alzheimer's disease (AD), which display a massive neuronal loss in the CA1 region of the hippocampus.

View Article and Find Full Text PDF

We present here evidence for the enhancement, at rest, of an inositol 1,4,5-trisphosphate (IP3)-mediated calcium signaling pathway in myotubes from dystrophin-deficient cell lines (SolC1(-)) as compared to a cell line from the same origin but transfected with mini-dystrophin (SolD(+)). With confocal microscopy, the number of sites discharging calcium (release site density [RSD]) was quantified and found more elevated in SolC1(-) than in SolD(+) myotubes. Variations of membrane potential had no significant effect on this difference, and higher resting [Ca2+]i in SolC1(-) (Marchand, E.

View Article and Find Full Text PDF

Dystrophin is a cytoskeletal protein normally expressed underneath the sarcolemma of muscle fibers. The lack of dystrophin in Duchenne muscular Dystrophy (DMD) muscles results in fiber necrosis, which was proposed to be mediated by chronic calcium mishandling. The extensive comparison of dystrophic cells from human or mdx mice with normal muscles have suggested that the lack of dystrophin may alter the resting calcium permeability and steady-state levels of calcium, but this latter observation remains controversial.

View Article and Find Full Text PDF

The cystic fibrosis transmembrane conductance regulator (CFTR) is a cyclic AMP-dependent chloride channel that mediates electrolyte transport across the luminal surface of epithelial cells. In this paper, we describe the CFTR regulation by syntaxin 8, a t-SNARE protein (target soluble N-ethylmaleimide-sensitive factor attachment protein receptor) involved in the SNARE endosomal complex. Syntaxin family members are key molecules implicated in diverse vesicle docking and membrane fusion events.

View Article and Find Full Text PDF

The signaling events that regulate vascular tone include voltage-dependent Ca(2+) influx and the activities of various ionic channels; which molecular entities are involved and their role are still a matter of debate. Here we show expression of the cystic fibrosis transmembrane conductance regulator (CFTR) Cl(-) channel in rat aortic smooth muscle cells. Immunoprecipitation and in vitro protein kinase A phosphorylation show the appearance of mature band C of CFTR.

View Article and Find Full Text PDF

This study aims to investigate the sodium/calcium exchanger expression in human co-cultured skeletal muscle cells and to compare the effects of Na(+)/Ca(2+) exchange activity in normal and dystrophic (Duchenne's muscular dystrophy) human co-cultured myotubes. For this purpose, variations of intracellular calcium concentration ([Ca(2+)](int)) were monitored, as the variations of the fluorescence ratio of indo-1 probe, in response to external sodium depletion. External sodium withdrawal induced [Ca(2+)](int) rises within several seconds in both normal and Duchenne's muscular dystrophy myotubes.

View Article and Find Full Text PDF