Publications by authors named "Anne Brockhoff"

Licorice saponins, the main constituents of Glycyrrhiza glabra L. roots, are highly appreciated by the consumer for their pleasant sweet and long lasting licorice taste. The objective of the present study was to understand the molecular features that contribute to bitter, sweet and licorice sensation of licorice roots, and whether individual compounds elicit more than one of these sensations.

View Article and Find Full Text PDF

We report on activity-guided investigation of the key antisweet principles of . Orosensory-guided fractionation by means of solid phase extraction, preparative 2D-LC, and semipreparative HPLC followed by accurate MS and 1D/2D NMR experiments revealed six known and three previously unknown gymnemic acids as the key constituents of seven highly sensory-active fractions. Localized via a modified comparative taste dilution analysis (cTDA) and taste modulation probability (TMP) based screening techniques, a strong intrinsic bitterness was also observed for gymnemic acids.

View Article and Find Full Text PDF

Gurmarin is a highly specific sweet taste-suppressing protein in rodents that is isolated from the Indian plant Gymnema sylvestre. Gurmarin consists of 35 amino acid residues containing 3 intramolecular disulfide bridges that form a cystine knot. Here, we report the crystal structure of gurmarin at a 1.

View Article and Find Full Text PDF

Sensory studies showed the volatile fraction of lemon grass and its main constituent, the odor-active citronellal, to significantly decrease the perceived bitterness of a black tea infusion as well as caffeine solutions. Seven citronellal-related derivatives were synthesized and shown to inhibit the perceived bitterness of caffeine in a structure-dependent manner. The aldehyde function at carbon 1, the ( R)-configuration of the methyl-branched carbon 3, and a hydrophobic carbon chain were found to favor the bitter inhibitory activity of citronellal; for example, even low concentrations of 25 ppm were observed to reduce bitterness perception of caffeine solution (6 mmol/L) by 32%, whereas ( R)-citronellic acid (100 pm) showed a reduction of only 21% and ( R)-citronellol (100 pm) was completely inactive.

View Article and Find Full Text PDF

Most human G protein coupled receptors (GPCRs) are activated by small molecules binding to their 7-transmembrane (7-TM) helix bundle. They belong to basally diverging branches: the 25 bitter taste 2 receptors and most members of the very large rhodopsin-like/class A GPCRs subfamily. Some members of the class A branch have been suggested to feature not only an orthosteric agonist-binding site but also a more extracellular or "vestibular" site, involved in the binding process.

View Article and Find Full Text PDF

Structural modification of the exocyclic amino function of guanosine 5'-monophosphate (5'-GMP) by Maillard-type reactions with reducing carbohydrates was recently found to increase the umami-enhancing activity of the nucleotide upon S-N(2)-1-carboxyalkylation and S-N(2)-(1-alkylamino)carbonylalkylation, respectively. Since the presence of sulfur atoms in synthetic N(2)-alkylated nucleotides was reported to be beneficial for sensory activity, a versatile Maillard-type modification of 5'-GMP upon reaction with glycine's Strecker aldehyde formaldehyde and organic thiols was performed in the present study. A series of N(2)-(alkylthiomethyl)guanosine and N(2)-(arylthiomethyl)guanosine 5'-monophosphates was generated and the compounds were evaluated to what extent they enhance the umami response to monosodium L-glutamate in vivo by a paired-choice comparison test using trained human volunteers and in vitro by means of cell-based umami taste receptor assay.

View Article and Find Full Text PDF

Sweet-tasting compounds are recognized by a heterodimeric receptor composed of the taste receptor, type 1, members 2 (T1R2) and 3 (T1R3) located in the mouth. This receptor is also expressed in the gut where it is involved in intestinal absorption, metabolic regulation, and glucose homeostasis. These metabolic functions make the sweet taste receptor a potential novel therapeutic target for the treatment of obesity and related metabolic dysfunctions such as diabetes.

View Article and Find Full Text PDF

Sensory-directed fractionation of traditional balsamic vinegar of Modena (TBV) led to the identification of the sweet-bitter tasting hexose acetates 6-O-acetyl-α/β-d-glucopyranose and 1-O-acetyl-β-d-fructopyranose as well as the previously unknown sweetness modulator 5-acetoxymethyl-2-furaldehyde. Taste re-engineering experiments and sensory time-intensity studies confirmed 5-acetoxymethyl-2-furaldehyde to contribute to the typical long-lasting sweet taste quality of TBV. Moreover, the response of the sweet taste receptor to this furaldehyde was verified by means of a functional hTAS1R2/hTAS1R3 receptor assay.

View Article and Find Full Text PDF

Brazzein is a small, heat-, and pH-stable sweet protein present in the fruits of the West African plant Pentadiplandra brazzeana Baillon. It exists in two forms differing in sweetness intensity. The major form, called pyrE-bra, contains a pyroglutamic acid at its N-terminus, while the minor form, called des-pyrE-bra, lacks this residue.

View Article and Find Full Text PDF

Steviol glycosides, the sweet principle of Stevia Rebaudiana (Bertoni) Bertoni, have recently been approved as a food additive in the EU. The herbal non-nutritive high-potency sweeteners perfectly meet the rising consumer demand for natural food ingredients in Europe. We have characterized the organoleptic properties of the most common steviol glycosides by an experimental approach combining human sensory studies and cell-based functional taste receptor expression assays.

View Article and Find Full Text PDF

Gurmarin, a 35-residue polypeptide, is known to selectively inhibit responses to sweet substances in rodents without affecting responses to other basic taste stimuli, such as NaCl, HCl, and quinine. Here, we report the heterologous expression of gurmarin using the methylotrophic yeast Pichia pastoris. Gurmarin was secreted into the buffered minimal medium using the α-factor preprosequence without the EAEA spacer peptide of Saccharomyces cerevisiae and was under the control of the methanol-inducible alcohol oxidase promoter.

View Article and Find Full Text PDF

Food contains complex blends of structurally diverse bitter compounds that trigger bitterness through activation of one or more of the ∼25 human TAS2 bitter taste receptors. It remains unsolved, however, whether the perceived bitterness of binary bitter-compound mixtures can be considered an additive function of all bitter-inducing chemicals in the mouth, suggesting that little mutual interaction takes place among bitter substances or if mixture suppression and synergism occurs. Here we report on two natural sesquiterpene lactones from edible plants, which stimulate distinct sets of hTAS2Rs in transfected cells.

View Article and Find Full Text PDF

Allatotropin is an insect neuropeptide with pleiotropic actions on a variety of different tissues. In the present work we describe the identification, cloning and functional and molecular characterization of an Aedes aegypti allatotropin receptor (AeATr) and provide a detailed quantitative study of the expression of the AeATr gene in the adult mosquito. Analysis of the tissue distribution of AeATr mRNA in adult female revealed high transcript levels in the nervous system (brain, abdominal, thoracic and ventral ganglia), corpora allata-corpora cardiaca complex and ovary.

View Article and Find Full Text PDF

Recent studies led to the identification of umami-enhancing (S)-N(2)-(1-carboxyethyl)- and (S)-N(2)-(1-alkylamino)carbonylalkyl)guanosine 5'-monophosphates that, together with their sensorially inactive (R)-stereoisomers, were found to be formed upon Maillard-type glycation of guanosine 5'-monophosphate (5'-GMP) with 1,3-dihydroxyacetone or glyceraldehyde, respectively. As the efficiency of this Maillard-type procedure to generate the amidated derivatives is limited by the low solubility and reactivity of long-chain alkyl amines as well as by the tedious separation of the diastereomers formed, a versatile synthesis for the (R)- and (S)-configured amides of N(2)-carboxyalkylated guanosine 5'-monophosphate was developed. Sensory evaluation of a series of N(2)-(1-alkylamino)carbonylalkyl)guanosine 5'-monophosphates revealed β-values for umami enhancement between 0.

View Article and Find Full Text PDF

Humans' bitter taste perception is mediated by the hTAS2R subfamily of the G protein-coupled membrane receptors (GPCRs). Structural information on these receptors is currently limited. Here we identify residues involved in the binding of phenylthiocarbamide (PTC) and in receptor activation in one of the most widely studied hTAS2Rs (hTAS2R38) by means of structural bioinformatics and molecular docking.

View Article and Find Full Text PDF

Human bitter taste is mediated by the hTAS2R family of G protein-coupled receptors. The discovery of the hTAS2Rs enables the potential to develop specific bitter receptor antagonists that could be beneficial as chemical probes to examine the role of bitter receptor function in gustatory and nongustatory tissues. In addition, they could have widespread utility in food and beverages fortified with vitamins, antioxidants, and other nutraceuticals, because many of these have unwanted bitter aftertastes.

View Article and Find Full Text PDF

An important question in taste research is how 25 receptors of the human TAS2R family detect thousands of structurally diverse compounds. An answer to this question may arise from the observation that TAS2Rs in general are broadly tuned to interact with numerous substances. Ultimately, interaction with chemically diverse agonists requires architectures of binding pockets tailored to combine flexibility with selectivity.

View Article and Find Full Text PDF

Humans perceive thousands of compounds as bitter. In sharp contrast, only approximately 25 taste 2 receptors (TAS2R) bitter taste receptors have been identified, raising the question as to how the vast array of bitter compounds can be detected by such a limited number of sensors. To address this issue, we have challenged 25 human taste 2 receptors (hTAS2Rs) with 104 natural or synthetic bitter chemicals in a heterologous expression system.

View Article and Find Full Text PDF

Bitterness perception in mammals is mediated through activation of dedicated bitter taste receptors located in the oral cavity. Genomic analyses revealed the existence of orthologous mammalian bitter taste receptor genes, which presumably recognize the same compounds in different species, as well as species-specific receptor gene expansions believed to fulfill a critical role during evolution. In man, 8 of the 25 bitter taste receptors (hTAS2Rs) are closely related members of such an expanded subfamily of receptor genes.

View Article and Find Full Text PDF

The molecular basis of human bitter taste perception is an area of intense research. Only 25 G protein-coupled receptors belonging to the hTAS2R gene family face the challenge to detect thousands of structurally different bitter compounds, most of which are plant metabolites. Since many natural bitter compounds are highly toxic, whereas others are part of our daily diets, bitter taste was crucial during evolution and still most likely affects our food selection.

View Article and Find Full Text PDF

In the present work we describe the functional and molecular characterization of two Aedes aegypti allatostatin-C receptor paralogs (AeAS-CrA and AeAS-CrB) and provide a detailed quantitative study of the expression of the AS-C receptor genes in an adult insect. The tissue distribution of the two AS-C receptors differed significantly; the mRNA levels of AeAS-CrB in the Malpighian tubules were the highest detected, while transcripts for AeAS-CrA were relatively low in this tissue. In addition, the transcript levels of both receptors were different in the thoracic and abdominal ganglia, corpora allata (CA) and the testis of the male.

View Article and Find Full Text PDF

Sesquiterpene lactones are a major class of natural bitter compounds occurring in vegetables and culinary herbs as well as in aromatic and medicinal plants, where they often represent the main gustatory and pharmacologically active component. Investigations on sesquiterpene lactones have mainly focused on their bioactive potential rather than on their sensory properties. In the present study, we report about the stimulation of heterologously expressed human bitter taste receptors, hTAS2Rs, by the bitter sesquiterpene lactone herbolide D.

View Article and Find Full Text PDF

The recent advances in the functional expression of TAS2Rs in heterologous systems resulted in the identification of bitter tastants that specifically activate receptors of this family. All bitter taste receptors reported to date exhibit a pronounced selectivity for single substances or structurally related bitter compounds. In the present study we demonstrate the expression of the hTAS2R14 gene by RT-PCR analyses and in situ hybridisation in human circumvallate papillae.

View Article and Find Full Text PDF