In the present work, we use Mach-Zehnder interferometry to thoroughly investigate the drying dynamics of a 2D confined drop of a charged colloidal dispersion. This technique makes it possible to measure the colloid concentration field during the drying of the drop at a high accuracy (about 0.5%) and with a high temporal and spatial resolution (about 1 frame per s and 5 μm per pixel).
View Article and Find Full Text PDFWe first report an original setup that enables continuous measurements of stresses induced by the drying of confined drops of complex fluids. This setup is mainly based on a precision scale working with an electromagnetic force compensation technique that provides accurate measurements of forces, while allowing simultaneously controlled evaporation rates, in situ microscopic observations, and thus quantitative estimates of normal stresses. We then performed an extensive study of the drying of a charged colloidal dispersion using this setup.
View Article and Find Full Text PDF