Few tools are available for noninvasive imaging of synapses in the living mammalian brain. Current paradigms require the use of genetically modified mice or viral delivery of genetic material to the brain. To develop an alternative chemical approach, utilizing the recognition of synaptic components by organic small molecules, we designed an imaging-based, high-content screen in cultured cortical neurons to identify molecules based on their colocalization with fluorescently tagged synaptic proteins.
View Article and Find Full Text PDFUnlabelled: Synaptic vesicle (SV) pools must maintain a functional repertoire of proteins to efficiently release neurotransmitter. The accumulation of old or damaged proteins on SV membranes is linked to synaptic dysfunction and neurodegeneration. However, despite the importance of SV protein turnover for neuronal health, the molecular mechanisms underlying this process are largely unknown.
View Article and Find Full Text PDFBackground: Innate immune responses are evolutionarily conserved processes that provide crucial protection against invading organisms. Gene activation by potent NF-κB transcription factors is essential both in mammals and Drosophila during infection and stress challenges. If not strictly controlled, this potent defense system can activate autoimmune and inflammatory stress reactions, with deleterious consequences for the organism.
View Article and Find Full Text PDFWhile the 26S proteasome is a key proteolytic complex, little is known about how proteasome levels are maintained in higher eukaryotic cells. Here we describe an RNA interference (RNAi) screen of Drosophila melanogaster that was used to identify transcription factors that may play a role in maintaining levels of the 26S proteasome. We used an RNAi library against 993 Drosophila transcription factor genes to identify genes whose suppression in Schneider 2 cells stabilized a ubiquitin-green fluorescent protein reporter protein.
View Article and Find Full Text PDFIn Saccharomyces cerevisiae, chemical or genetic inhibition of proteasome activity induces new proteasome synthesis promoted by the transcription factor RPN4. This ensures that proteasome activity is matched to demand. This transcriptional feedback loop is conserved in mammals, but its molecular basis is not understood.
View Article and Find Full Text PDFThe multifunctional AAA-ATPase p97 is one of the most abundant and conserved proteins in eukaryotic cells. The p97/Npl4/Ufd1 complex dislocates proteins that fail the protein quality control in the endoplasmic reticulum to the cytosol where they are subject to degradation by the ubiquitin/proteasome system. Substrate dislocation depends on the unfoldase activity of p97.
View Article and Find Full Text PDFRegulatory transcription factors (rTFs), which bind specific DNA sequences in the regulatory regions of genes and subsequently activate or repress transcription, play a central role in programming genomic expression. The number of rTFs in a species might therefore reflect its functional complexity. For simple organisms like yeast, a relatively small number of rTFs might be expected that is fairly constant between yeast species.
View Article and Find Full Text PDF