Publications by authors named "Anne Bannuscher"

Background: The establishment of reliable and robust in vitro models for hazard assessment, a prerequisite for moving away from animal testing, requires the evaluation of model transferability and reproducibility. Lung models that can be exposed via the air, by means of an air-liquid interface (ALI) are promising in vitro models for evaluating the safety of nanomaterials (NMs) after inhalation exposure. We performed an inter-laboratory comparison study to evaluate the transferability and reproducibility of a lung model consisting of the human bronchial cell line Calu-3 as a monoculture and, to increase the physiologic relevance of the model, also as a co-culture with macrophages (either derived from the THP-1 monocyte cell line or from human blood monocytes).

View Article and Find Full Text PDF

Pulmonary fibrosis (PF) is a chronic, irreversible lung disease that is typically fatal and characterized by an abnormal fibrotic response. As a result, vast areas of the lungs are gradually affected, and gas exchange is impaired, making it one of the world's leading causes of death. This can be attributed to a lack of understanding of the onset and progression of the disease, as well as a poor understanding of the mechanism of adverse responses to various factors, such as exposure to allergens, nanomaterials, environmental pollutants, etc.

View Article and Find Full Text PDF

Air-liquid interface (ALI) lung cell models cultured on permeable transwell inserts are increasingly used for respiratory hazard assessment requiring controlled aerosolization and deposition of any material on ALI cells. The approach presented herein aimed to assess the transwell insert-delivered dose of aerosolized materials using the VITROCELL® Cloud12 system, a commercially available aerosol-cell exposure system. An inter-laboratory comparison study was conducted with seven European partners having different levels of experience with the VITROCELL® Cloud12.

View Article and Find Full Text PDF

The immense diversity and constant development of nanomaterials (NMs) increase the need for a facilitated risk assessment, which requires knowledge of the modes of action (MoAs) of NMs. This necessitates a comprehensive data basis, which can be obtained using omics. Furthermore, the establishment of suitable in vitro test systems is essential to follow the 3R concept and to cope with the high number of NMs.

View Article and Find Full Text PDF

Several reports on amorphous silica nanomaterial (aSiO NM) toxicity have been questioning their safety. Herein, we investigated the in vivo pulmonary toxicity of four variants of aSiO NM: SiO_15_Unmod, SiO_15_Amino, SiO_7 and SiO_40. We focused on alterations in lung DNA and protein integrity, and gene expression following single intratracheal instillation in rats.

View Article and Find Full Text PDF

Nanomaterials (NMs) can be produced in plenty of variants posing several challenges for NM hazard and risk assessment. Metabolomic profiling of NM-treated cells and tissues allows for insights into underlying Mode-of-Action (MoA) and offers several advantages in this context. It supports the description of Adverse Outcome Pathways (AOPs) and, therefore, tailored AOP-based hazard testing strategies.

View Article and Find Full Text PDF

In respect to the high number of released nanomaterials and their highly variable properties, novel grouping approaches are required based on the effects of nanomaterials. Proper grouping calls for a combination of an experimental setup with a higher number of structurally similar nanomaterials and for employing integrated omics approaches to identify the mode of action. Here, we analyzed the effects of seven well-characterized NMs comprising different chemical compositions, sizes and chemical surface modifications on the rat alveolar macrophage cell line NR8383.

View Article and Find Full Text PDF

Background: Nanomaterials (NMs) can be fine-tuned in their properties resulting in a high number of variants, each requiring a thorough safety assessment. Grouping and categorization approaches that would reduce the amount of testing are in principle existing for NMs but are still mostly conceptual. One drawback is the limited mechanistic understanding of NM toxicity.

View Article and Find Full Text PDF

Background: Oxidative stress, a commonly used paradigm to explain nanoparticle (NP)-induced toxicity, results from an imbalance between reactive oxygen species (ROS) generation and detoxification. As one consequence, protein carbonyl levels may become enhanced. Thus, the qualitative and quantitative description of protein carbonylation may be used to characterize how biological systems respond to oxidative stress induced by NPs.

View Article and Find Full Text PDF

Nanoparticles can be efficient foaming agents. Yet, the detailed mechanisms of foam stabilization by these particles remain unclear. In most cases, the foamability and foam stability of a system have to be determined empirically.

View Article and Find Full Text PDF