Pneumonic tularemia is caused by inhalation of Francisella tularensis, one of the most infectious microbes known. We wanted to study the kinetics of the initial and early interactions between bacterium and host cells in the lung. To do this, we examined the infection of A549 airway epithelial cells with the live vaccine strain (LVS) of F.
View Article and Find Full Text PDFThe bacterium Francisella philomiragia has been isolated from environmental samples originating from around the globe. F. philomiragia-related strains cause francisellosis of both farmed and wild fish.
View Article and Find Full Text PDFWe previously showed the feasibility of using locked nucleic acid (LNA) for flow cytometric-fluorescence in situ hybridization (LNA flow-FISH) detection of a target cellular mRNA. Here we demonstrate how the method can be used to monitor viral RNA in infected cells. We compared the results of the LNA flow-FISH with other methods of quantifying virus replication, including the use of an enhanced green fluorescent protein (EGFP) viral construct and quantitative reverse-transcription polymerase chain reaction.
View Article and Find Full Text PDFFrancisella tularensis is associated with water and waterways and infects many species of animals, insects, and protists. The mechanism Francisella utilizes to persist in the environment and in tick vectors is currently unknown. We have demonstrated for the first time that Francisella novicida, a model organism of F.
View Article and Find Full Text PDF