We present a unique experimental design that enables the measurement of photoelectron circular dichroism (PECD) from chiral molecules in aqueous solution. The effect is revealed from the intensity difference of photoelectron emission into a backward-scattering angle relative to the photon propagation direction when ionizing with circularly polarized light of different helicity. This leads to asymmetries (normalized intensity differences) that depend on the handedness of the chiral sample and exceed the ones in conventional dichroic mechanisms by orders of magnitude.
View Article and Find Full Text PDFLight harvesting via energy storage in azobenzene has been a key topic for decades and the process of energy distribution over the molecular degrees of freedom following photoexcitation remains to be understood. Dynamics of a photoexcited system can exhibit high degrees of nonergodicity when it is driven by just a few degrees of freedom. Typically, an internal conversion leads to the loss of such localization of dynamics as the intramolecular energy becomes statistically redistributed over all molecular degrees of freedom.
View Article and Find Full Text PDFThe competition between ultrafast intersystem crossing and internal conversion in benzene, toluene, and p-xylene is investigated with time-resolved photoelectron spectroscopy and quantum chemical calculations. By exciting to S out-of-plane symmetry breaking, distortions are activated at early times whereupon spin-forbidden intersystem crossing becomes (partly) allowed. Natural bond orbital analysis suggests that the pinnacle carbon atoms distorting from the aromatic plane change hybridization between the planar Franck-Condon geometry and the deformed (boat-shaped) S equilibrium geometry.
View Article and Find Full Text PDFThe dynamics of 2-nitrofluorene (2-NF) in deuterated acetonitrile is studied using UV pump, IR probe femtosecond transient absorption spectroscopy. Upon excitation to the vibrationally excited S1 state, the excited-state population of 2-NF branches into two different relaxation pathways. One route leads to intersystem crossing (ISC) to the triplet manifold within a few hundred femtoseconds and the other to internal conversion (IC) to the ground state.
View Article and Find Full Text PDFDipole bound (DB) and valence bound (VB) anions of binary iodide-adenine complexes have been studied using one-color and time-resolved photoelectron imaging at excitation energies near the vertical detachment energy. The experiments are complemented by quantum chemical calculations. One-color spectra show evidence for two adenine tautomers, the canonical, biologically relevant A9 tautomer and the A3 tautomer.
View Article and Find Full Text PDFThe dynamics of electron attachment to the DNA base thymine are investigated using femtosecond time-resolved photoelectron imaging of the gas phase iodide-thymine (I(-)T) complex. An ultraviolet pump pulse ejects an electron from the iodide and prepares an iodine-thymine temporary negative ion that is photodetached with a near-IR probe pulse. The resulting photoelectrons are analyzed with velocity-map imaging.
View Article and Find Full Text PDFElectron attachment to uracil was investigated by applying time-resolved photoelectron imaging to iodide-uracil (I(-)U) complexes. In these studies, an ultraviolet pump pulse initiated charge transfer from the iodide to the uracil, and the resulting dynamics of the uracil temporary negative ion were probed. Five different excitation energies were used, 4.
View Article and Find Full Text PDFThe absorption of light by molecules can induce ultrafast dynamics and coupling of electronic and nuclear vibrational motion. The ultrafast nature in many cases rests on the importance of several potential energy surfaces in guiding the nuclear motion-a concept of central importance in many aspects of chemical reaction dynamics. This Minireview focuses on the non-ergodic nature of internal conversion, that is, on the concept that the nuclear dynamics only sample a reduced phase space, potentially resulting in localization of the dynamics in real space.
View Article and Find Full Text PDFThe photochemistry of nitro-substituted polyaromatic compounds is generally determined by the rapid decay of its S1 state and the rapid population of its triplet manifold. Previous studies have shown that such an efficient channel is due to a strong coupling of the fluorescent state with specific upper receiver states in the triplet manifold. Here we examine variations in this mechanism through the comparison of the photophysics of 2-nitrofluorene with that of 2-diethylamino-7-nitrofluorene.
View Article and Find Full Text PDFFor a molecule to survive evolution and to become a key building block in nature, photochemical stability is essential. The photolytically weak S-S bond does not immediately seem to possess that ability. We mapped the real-time motion of the two sulfur radicals that result from disulfide photolysis on the femtosecond time scale and found the reason for the existence of the S-S bridge as a natural building block in folded structures.
View Article and Find Full Text PDF