Publications by authors named "Anne B Sereno"

Much experimental evidence in neuroscience has suggested a division of higher visual processing into a ventral pathway specialized for object recognition and a dorsal pathway specialized for spatial recognition. Previous computational studies have suggested that neural networks with two segregated pathways (branches) have better performance in visual recognition tasks than neural networks with a single pathway (branch). One previously proposed possibility is that two pathways increase the learning efficiency of a network by allowing separate networks to process information about different visual attributes separately.

View Article and Find Full Text PDF

Many studies have shown that the human visual system has two major functionally distinct cortical visual pathways: a ventral pathway, thought to be important for object recognition, and a dorsal pathway, thought to be important for spatial cognition. According to our and others previous studies, artificial neural networks with two segregated pathways can determine objects' identities and locations more accurately and efficiently than one-pathway artificial neural networks. In addition, we showed that these two segregated artificial cortical visual pathways can each process identity and spatial information of visual objects independently and differently.

View Article and Find Full Text PDF

Normal aging often results in an increase in physiological tremors and slowing of the movement of the hands, which can impair daily activities and quality of life. This study, using lightweight wearable non-invasive sensors, aimed to detect and identify age-related changes in wrist kinematics and response latency. Eighteen young (ages 18-20) and nine older (ages 49-57) adults performed two standard tasks with wearable inertial measurement units on their wrists.

View Article and Find Full Text PDF

The two visual cortical streams hypothesis, which suggests object properties (what) are processed separately from spatial properties (where), has a longstanding history, and much evidence has accumulated to support its conjectures. Nevertheless, in the last few decades, conflicting evidence has mounted that demands some explanation and modification. For example, existence of (1) shape activities (fMRI) or shape selectivities (physiology) in dorsal stream, similar to ventral stream; likewise, spatial activations (fMRI) or spatial selectivities (physiology) in ventral stream, similar to dorsal stream; (2) multiple segregated subpathways within a stream.

View Article and Find Full Text PDF

There is growing interest in the effects of sports-related repetitive head impacts (RHIs) on athletes' cognitive capabilities. This study examines the effect of RHIs in data collected from adolescent athletes to estimate the magnitude and longevity of RHIs on sensorimotor and cognitive performance. A non-linear regression model estimated the longevity of RHI effects by adding a half-life parameter embedded in an exponential decay function.

View Article and Find Full Text PDF

When measuring sparseness in neural populations as an indicator of efficient coding, an implicit assumption is that each stimulus activates a different random set of neurons. In other words, population responses to different stimuli are, on average, uncorrelated. Here we examine neurophysiological data from four lobes of macaque monkey cortex, including V1, V2, MT, anterior inferotemporal cortex, lateral intraparietal cortex, the frontal eye fields, and perirhinal cortex, to determine how correlated population responses are.

View Article and Find Full Text PDF

Research suggests cumulative effects of repetitive head impacts (RHIs) on brain structure, especially with younger age of first exposure. Further, recent evidence suggests no immediate cognitive changes with increased RHIs but impairments across a sports season. The aim was to examine more closely the short-term time course of behavioral effects of exposure to RHI.

View Article and Find Full Text PDF

Objective: Schizophrenia patients show executive function (EF) impairments in voluntary orienting as measured by eye-movements. We tested 14 inpatients to investigate the effects of the antipsychotic olanzapine on EF, as measured by antisaccade eye-movement performance.

Methods: Patients were tested at baseline (before olanzapine), 3-5 days post-medication, and 12-14 days post-medication.

View Article and Find Full Text PDF

We extend the discussion in the target article about distinctions between extrinsic coding (external references to known things, as required by information theory) and the alternative we and the target article both favor, intrinsic coding (internal relationships within sensory and motor signals). Central to our thinking about intrinsic coding is population coding and the concept of high-dimensional neural response spaces.

View Article and Find Full Text PDF

Attentional deficits are core to numerous developmental, neurological, and psychiatric disorders. At the single-cell level, much knowledge has been garnered from studies of shape and spatial properties, as well as from numerous demonstrations of attentional modulation of those properties. Despite this wealth of knowledge of single-cell responses across many brain regions, little is known about how these cellular characteristics relate to population level representations and how such representations relate to behavior; in particular, how these cellular responses relate to the representation of shape, space, and attention, and how these representations differ across cortical areas and streams.

View Article and Find Full Text PDF

Changes in prefrontal cortex are thought to be responsible for many of the characteristic behavioral changes that are seen during adolescence and late adulthood. Disruption of prefrontal cortex is an early sign for many developmental, neurological, and psychiatric disorders. Goal directed eye movements, such as Anti-saccades, have been shown to have high sensitivity as a gross assessment of prefrontal lobe function.

View Article and Find Full Text PDF

We examined how attention causes neural population representations of shape and location to change in ventral stream (AIT) and dorsal stream (LIP). Monkeys performed two identical delayed-match-to-sample (DMTS) tasks, attending either to shape or location. In AIT, shapes were more discriminable when directing attention to shape rather than location, measured by an increase in mean distance between population response vectors.

View Article and Find Full Text PDF

Current clinical diagnostic tools are limited in their ability to accurately differentiate idiopathic Parkinson's disease (PD) from multiple system atrophy (MSA) and other parkinsonian disorders early in the disease course, but eye movements may stand as objective and sensitive markers of disease differentiation and progression. To assess the use of eye movement performance for uniquely characterizing PD and MSA, subjects diagnosed with PD ( = 21), MSA ( = 11), and age-matched controls (C,  = 20) were tested on the prosaccade and antisaccade tasks using an infrared eye tracker. Twenty of these subjects were retested ~7 months later.

View Article and Find Full Text PDF

Study Objective: Medical residents working overnight call shifts experience sleep deprivation and circadian clock disruption. This leads to deficits in sensorimotor function and increases in workplace accidents. Using quick tablet-based tasks, we investigate whether measureable executive function differences exist following a single overnight call versus routine shift, and whether factors like stress, rest and caffeine affect these measures.

View Article and Find Full Text PDF

Worldwide, more than 22 million children and adolescents are exposed to repetitive head impacts (RHI) in soccer. Evidence indicates cumulative effects on brain structure, but it is not known whether exposure to RHI affects cognitive improvement in adolescents. The aim of the study was to determine whether exposure to RHI while heading the ball in soccer affects improvement in cognitive performance in adolescents over time.

View Article and Find Full Text PDF

We have previously demonstrated differences in eye-position spatial maps for anterior inferotemporal cortex (AIT) in the ventral stream and lateral intraparietal cortex (LIP) in the dorsal stream, based on population decoding of gaze angle modulations of neural visual responses (i.e., eye-position gain fields).

View Article and Find Full Text PDF

Impairment in social interactions is a primary characteristic of people diagnosed with autism spectrum disorder (ASD). Although these individuals tend to orient less to naturalistic social cues than do typically developing (TD) individuals, laboratory experiments testing social orienting in ASD have been inconclusive, possibly because of a failure to fully isolate reflexive (stimulus-driven) and voluntary (goal-directed) social orienting processes. The purpose of the present study was to separately examine potential reflexive and/or voluntary social orienting differences in individuals with ASD relative to TD controls.

View Article and Find Full Text PDF

Many neurons in the dorsal and ventral visual stream have the property that after a brief visual stimulus presentation in their receptive field, the spiking activity in these neurons persists above their baseline levels for several seconds. This maintained activity is not always correlated with the monkey's task and its origin is unknown. We have previously proposed a simple neural network model, based on shape selective neurons in monkey lateral intraparietal cortex, which predicts the valence and time course of reflexive (bottom-up) spatial attention.

View Article and Find Full Text PDF

This study examined the potential for novel tablet-based tasks, modeled after eye tracking techniques, to detect subtle sensorimotor and cognitive deficits after mild traumatic brain injury (mTBI). Specifically, we examined whether performance on these tablet-based tasks (Pro-point and Anti-point) was able to correctly categorize concussed versus non-concussed participants, compared with performance on other standardized tests for concussion. Patients admitted to the emergency department with mTBI were tested on the Pro-point and Anti-point tasks, a current standard cognitive screening test (i.

View Article and Find Full Text PDF

Cocaine-dependent (CD) subjects show attentional bias toward cocaine-related cues, and this form of cue-reactivity may be predictive of craving and relapse. Attentional bias has previously been assessed by models that present drug-relevant stimuli and measure physiological and behavioral reactivity (often reaction time). Studies of several CNS diseases outside of substance use disorders consistently report anti-saccade deficits, suggesting a compromise in the interplay between higher-order cortical processes in voluntary eye control (i.

View Article and Find Full Text PDF

Background: Reports conflict as to whether Tourette syndrome (TS) confers deficits in executive function. This study's aim was to evaluate executive function in youths with TS using oculomotor tasks while controlling for confounds of tic severity, age, medication, and severity of comorbid disorders.

Method: Four saccade tasks requiring the executive functions of response generation, response inhibition, and working memory (prosaccade, antisaccade, 0-back, and 1-back) were administered.

View Article and Find Full Text PDF

We recorded visual responses while monkeys fixated the same target at different gaze angles, both dorsally (lateral intraparietal cortex, LIP) and ventrally (anterior inferotemporal cortex, AIT). While eye-position modulations occurred in both areas, they were both more frequent and stronger in LIP neurons. We used an intrinsic population decoding technique, multidimensional scaling (MDS), to recover eye positions, equivalent to recovering fixated target locations.

View Article and Find Full Text PDF

The target article does not consider neural data on primate spatial representations, which we suggest provide grounds for believing that navigational space may be three-dimensional rather than quasi-two-dimensional. Furthermore, we question the authors' interpretation of rat neurophysiological data as indicating that the vertical dimension may be encoded in a neural structure separate from the two horizontal dimensions.

View Article and Find Full Text PDF

Current population coding methods, including weighted averaging and Bayesian estimation, are based on extrinsic representations. These require that neurons be labeled with response parameters, such as tuning curve peaks or noise distributions, which are tied to some external, world-based metric scale. Firing rates alone, without this external labeling, are insufficient to represent a variable.

View Article and Find Full Text PDF