Background: Biallelic deletions at 15q15.3, including STRC and CATSPER2, cause autosomal recessive deafness-infertility syndrome (DIS), while biallelic deletions of STRC alone cause nonsyndromic hearing loss. These deletions are among the leading genetic causes of mild-moderate hearing loss, but their detection using chromosomal microarray (CMA) is impeded by a tandem duplication containing highly homologous pseudogenes.
View Article and Find Full Text PDFRecent advances in genomic sequencing technologies have expanded practitioners' utilization of genetic information in a timely and efficient manner for an accurate diagnosis. With an ever-increasing resource of genomic data from progress in the interpretation of genome sequences, clinicians face decisions about how and when genomic information should be presented to families, and at what potential expense. Presently, there is limited knowledge or experience in establishing the value of implementing genome sequencing into newborn screening.
View Article and Find Full Text PDFThis appendix, developed by the staff at the Center for Advanced Molecular Diagnostics in the Department of Pathology at the Brigham and Women's Hospital, includes a comprehensive list of current "macros" or standardized statements used to facilitate reporting of cytogenetic results. These are provided as a useful reference for other laboratories. The statements are organized under the general categories of constitutional or acquired abnormalities and subdivided into analysis type (GTG-banding, FISH, or chromosomal microarray).
View Article and Find Full Text PDFDFNA9 sensorineural hearing loss and vestibular disorder, caused by mutations in COCH, has a unique identifying histopathology including prominent acellular deposits in cochlear and vestibular labyrinths. A recent study has shown presence of deposits also in middle ear structures of DFNA9-affected individuals (McCall et al., J Assoc Res Otolaryngol 12:141-149, 2004).
View Article and Find Full Text PDFThis appendix, developed by the staff at the Clinical Cytogenetics Laboratory at the Brigham and Women's Hospital, includes a comprehensive list of current "macros" or standardized statements used to facilitate reporting of cytogenetic results. These are provided as a reference for other laboratories. The statements are organized under the general categories of constitutional or acquired abnormalities and subdivided into analysis type (GTG-banding or FISH).
View Article and Find Full Text PDFTwo mouse models, the Coch(G88E/G88E) or "knock-in" and the Coch(-/-) or "knock-out" (Coch null), have been developed to study the human late-onset, progressive, sensorineural hearing loss and vestibular dysfunction known as DFNA9. This disorder results from missense and in-frame deletion mutations in COCH (coagulation factor C homology), encoding cochlin, the most abundantly detected protein in the inner ear. We have performed hearing and vestibular analyses by auditory brainstem response (ABR) and vestibular evoked potential (VsEP) testing of the Coch(-/-) and Coch(G88E/G88E) mouse models.
View Article and Find Full Text PDFThis appendix, developed by the staff at the Clinical Cytogenetics Laboratory at the Brigham and Women's Hospital, includes a comprehensive list of current "macros" or standardized statements used to facilitate reporting of cytogenetic results. These are provided as a reference for other laboratories. The statements are organized under the general categories of constitutional or acquired abnormalities and subdivided into analysis type (GTG-banding or FISH).
View Article and Find Full Text PDFMutations in COCH (coagulation factor C homology) are etiologic for the late-onset, progressive, sensorineural hearing loss and vestibular dysfunction known as DFNA9. We introduced the G88E mutation by gene targeting into the mouse and have created a Coch(G88E/G88E) mouse model for the study of DFNA9 pathogenesis and cochlin function. Vestibular-evoked potential (VsEP) thresholds of Coch(G88E/G88E) mice were elevated at all ages tested compared with wild-type littermates.
View Article and Find Full Text PDFThis appendix, developed by the staff at the Clinical Cytogenetics Laboratory at the Brigham and Women's Hospital, provides a comprehensive list of the facilities' current "macros" or standardized statements, used to facilitate reporting of cytogenetic results. These are provided as a reference for other laboratories. The statements are organized under the general categories of constitutional or acquired abnormalities and subdivided into analysis type (GTG-banding or FISH).
View Article and Find Full Text PDFGenes involved in the hearing process have been identified through both positional cloning efforts following genetic linkage studies of families with heritable deafness and by candidate gene approaches based on known functional properties or inner ear expression. The latter method of gene discovery may employ a tissue- or organ-specific approach. Through characterization of a human fetal cochlear cDNA library, we have identified transcripts that are preferentially and/or highly expressed in the cochlea.
View Article and Find Full Text PDFThe ion channel genome is still being defined despite numerous publications on the subject. The ion channel transcriptome is even more difficult to assess. Using high-throughput computational tools, we surveyed all available inner ear cDNA libraries to identify genes coding for ion channels.
View Article and Find Full Text PDFEST N66408 represents one of several large unique clusters expressed in the Morton human fetal cochlear cDNA library. N66408 is 575 bp in size and initial BLAST analysis of this sequence showed no homology to any known genes or expressed sequence tags (ESTs) from other organs or tissues. Sequence of the original cochlear clone from which N66408 was derived revealed that the corresponding cDNA was about 700 bp in size, including 125 bp at its 5' end with homology to the 3' end of COL9A1 in addition to 575 bp of novel sequence.
View Article and Find Full Text PDFWe have cloned a novel human gene, designated PFET1 (predominantly fetal expressed T1 domain) (HUGO-approved symbol KCTD12 or C13orf2), by subtractive hybridization and differential screening of human fetal cochlear cDNA clones. Also, we have identified the mouse homolog, designated Pfet1. PFET1/Pfet1 encode a single transcript of approximately 6 kb in human, and three transcripts of approximately 4, 4.
View Article and Find Full Text PDF