Several test function suites are being used for numerical benchmarking of multiobjective optimization algorithms. While they have some desirable properties, such as well-understood Pareto sets and Pareto fronts of various shapes, most of the currently used functions possess characteristics that are arguably underrepresented in real-world problems such as separability, optima located exactly at the boundary constraints, and the existence of variables that solely control the distance between a solution and the Pareto front. Via the alternative construction of combining existing single-objective problems from the literature, we describe the bbob-biobj test suite with 55 bi-objective functions in continuous domain, and its extended version with 92 bi-objective functions (bbob-biobj-ext).
View Article and Find Full Text PDFThis paper analyzes a (1, λ)-Evolution Strategy, a randomized comparison-based adaptive search algorithm optimizing a linear function with a linear constraint. The algorithm uses resampling to handle the constraint. Two cases are investigated: first, the case where the step-size is constant, and second, the case where the step-size is adapted using cumulative step-size adaptation.
View Article and Find Full Text PDFA novel algorithm is proposed for the acceleration of the exact stochastic simulation algorithm by a predefined number of reaction firings (R-leaping) that may occur across several reaction channels. In the present approach, the numbers of reaction firings are correlated binomial distributions and the sampling procedure is independent of any permutation of the reaction channels. This enables the algorithm to efficiently handle large systems with disparate rates, providing substantial computational savings in certain cases.
View Article and Find Full Text PDF