Publications by authors named "Anne A. Lazarides"

Surface plasmons supported by metal nanoparticles are perturbed by coupling to a surface that is polarizable. Coupling results in enhancement of near fields and may increase the scattering efficiency of radiative modes. In this study, we investigate the Rayleigh and Raman scattering properties of gold nanoparticles functionalized with cyanine deposited on silicon and quartz wafers and on gold thin films.

View Article and Find Full Text PDF

The strongly enhanced and localized optical fields that occur within the gaps between metallic nanostructures can be leveraged for a wide range of functionality in nanophotonic and optical metamaterial applications. Here, we introduce a means of precise control over these nanoscale gaps through the application of a molecular spacer layer that is self-assembled onto a gold film, upon which gold nanoparticles (NPs) are deposited electrostatically. Simulations using a three-dimensional finite element model and measurements from single NPs confirm that the gaps formed by this process, between the NP and the gold film, are highly reproducible transducers of surface-enhanced resonant Raman scattering.

View Article and Find Full Text PDF

Molecular control of plasmon coupling is investigated in sub-100 nm assemblies composed of 13 nm gold "satellite" particles tethered by reconfigurable DNA nanostructures to a 50 nm gold "core" particle. Reconfiguration of the DNA nanostructures from a compact to an extended state results in blue shifting of the assembly plasmon resonance, indicating reduced interparticle coupling and lengthening of the core-satellite tether. Scattering spectra of the core-satellite assemblies before and after reconfiguration are compared with spectra calculated using a structural model that incorporates the core/satellite ratio determined by TEM imaging and estimates of tether length based upon prior measurements of interparticle separation in DNA linked nanoparticle networks.

View Article and Find Full Text PDF

Electrodynamic simulations of gold nanoparticle spectra were used to investigate the sensitivity of localized surface plasmon band position to the refractive index, n, of the medium for nanoparticles of various shapes and nanoshells of various structures. Among single-component nanoparticles less than 130 nm in size, sensitivities of dipole resonance positions to bulk refractive index are found to depend only upon the wavelength of the resonance and the dielectric properties of the metal and the medium. Among particle plasmons that peak in the frequency range where the real part of the metal dielectric function varies linearly with wavelength and the imaginary part is small and slowly varying, the sensitivity of the peak wavelength, lambda, to refractive index, n, is found to be a linearly increasing function of lambda, regardless of the structural features of the particle that determine lambda.

View Article and Find Full Text PDF

DNA hybridization enables the three-dimensional assembly of Au nanoparticles and streptavidin. The high-density DNA-modified Au nanoparticles were stable to nonspecific binding of streptavidin. Structural and melting investigations on the assemblies showed their formation was reversible.

View Article and Find Full Text PDF