To date several studies address the important role of gut microbiome and its interplay with the human host in the health and disease status. However, the selection of a universal sampling matrix representative of the microbial biodiversity associated with the gastrointestinal (GI) tract, is still challenging. Here we present a study in which, through a deep metabarcoding analysis of the 16S rRNA gene, we compared two sampling matrices, feces (F) and colon washing feces (CWF), in order to evaluate their relative effectiveness and accuracy in representing the complexity of the human gut microbiome.
View Article and Find Full Text PDFSARS-CoV-2 replication requires the synthesis of a set of structural proteins expressed through discontinuous transcription of ten subgenomic mRNAs (sgmRNAs). Here, we have fine-tuned droplet digital PCR (ddPCR) assays to accurately detect and quantify SARS-CoV-2 genomic ORF1ab and sgmRNAs for the nucleocapsid (N) and spike (S) proteins. We analyzed 166 RNA samples from anonymized SARS-CoV-2 positive subjects and we observed a recurrent and characteristic pattern of sgmRNAs expression in relation to the total viral RNA content.
View Article and Find Full Text PDFThe quantification of the total microbial content in metagenomic samples is critical for investigating the interplay between the microbiome and its host, as well as for assessing the accuracy and precision of the relative microbial composition which can be strongly biased in low microbial biomass samples. In the present study, we demonstrate that digital droplet PCR (ddPCR) can provide accurate quantification of the total copy number of the 16S rRNA gene, the gene usually exploited for assessing total bacterial abundance in metagenomic DNA samples. Notably, using DNA templates with different integrity levels, as measured by the DNA integrity number (DIN), we demonstrated that 16S rRNA copy number quantification is strongly affected by DNA quality and determined a precise correlation between quantification underestimation and DNA degradation levels.
View Article and Find Full Text PDFDiabetic Nephropathy (DN) is a chronic complication of diabetes and the primary cause of end stage renal disease. Differential diagnosis for DN requires invasive histological investigation, thus there is need for non-invasive biomarkers to discriminate among different histological lesions in diabetic patients. With the aim to identify a pattern of differentially expressed miRNAs in kidney biopsies of DN patients, we assayed miRNA expression in kidney biopsies from DN patients, diabetic patients with membranous nephropathy and patients with normal histology.
View Article and Find Full Text PDFUnlabelled: Diabetic nephropathy patients (DN) are characterized by increased lysine63 ubiquitination (Lys63-Ub) at the tubular level. Autophagy is deregulated under diabetic conditions, even though the molecular mechanisms and the consequences of this alteration need to be elucidated. The aim of this study was to investigate the link between Lys63-Ub and autophagy in DN and the involvement of these two processes in tubular cell fate.
View Article and Find Full Text PDFDiabetic nephropathy (DN) is a chronic complication of type 2 diabetes and is the most frequent form of chronic kidney disease that can lead to end-stage renal disease. Different pathways, involved in oxidative stress, inflammation, fibrosis and cell death, are responsible for the pathogenesis of DN and regulate the progression of the disease. Ubiquitination is a fundamental pathway in intracellular signaling whose role is emerging in the regulation of molecular processes responsible for several human diseases.
View Article and Find Full Text PDFThe purpose of our study was to evaluate how hyperglycemia (HG) influences Lys63 protein ubiquitination and its involvement in tubular damage and fibrosis in diabetic nephropathy (DN). Gene and protein expression of UBE2v1, a ubiquitin-conjugating E2-enzyme variant that mediates Lys63-linked ubiquitination, and Lys63-ubiquitinated proteins increased in HK2 tubular cells under HG. Matrix-assisted laser desorption/ionization-time of flight/tandem mass spectrometry identified 30 Lys63-ubiquitinated proteins, mainly involved in cellular organization, such as β-actin, whose Lys63 ubiquitination increased under HG, leading to cytoskeleton disorganization.
View Article and Find Full Text PDFChronic antibody-mediated rejection (CAMR) represents the main cause of kidney graft loss. To uncover the molecular mechanisms underlying this condition, we characterized the molecular signature of peripheral blood mononuclear cells (PBMCs) and, separately, of CD4(+) T lymphocytes isolated from CAMR patients, compared to kidney transplant recipients with normal graft function and histology. We enrolled 29 patients with biopsy-proven CAMR, 29 stable transplant recipients (controls), and 8 transplant recipients with clinical and histological evidence of interstitial fibrosis/tubular atrophy.
View Article and Find Full Text PDF