Publications by authors named "Annarita Aiello Talamanca"

An extensive number of pathologies are associated with mitochondrial dysfunction (MDF) and oxidative stress (OS). Thus, mitochondrial cofactors termed "mitochondrial nutrients" (MN), such as α-lipoic acid (ALA), Coenzyme Q10 (CoQ10), and l-carnitine (CARN) (or its derivatives) have been tested in a number of clinical trials, and this review is focused on the use of MN-based clinical trials. The papers reporting on MN-based clinical trials were retrieved in MedLine up to July 2014, and evaluated for the following endpoints: (a) treated diseases; (b) dosages, number of enrolled patients and duration of treatment; (c) trial success for each MN or MN combinations as reported by authors.

View Article and Find Full Text PDF

Beyond the disorders recognized as mitochondrial diseases, abnormalities in function and/or ultrastructure of mitochondria have been reported in several unrelated pathologies. These encompass ageing, malformations, and a number of genetic or acquired diseases, as diabetes and cardiologic, haematologic, organ-specific (e.g.

View Article and Find Full Text PDF

Fanconi anaemia (FA) is a genetic cancer predisposition disorder associated with cytogenetic instability, bone marrow failure and a pleiotropic cellular phenotype, including low thresholds of responses to oxidative stress, cross-linking agents and selected cytokines. This study was aimed at defining the scope of abnormalities in gene expression using the publicly available FA Transcriptome Consortium (FTC) database (Gene Expression Omnibus, 2009 and publicly available as GSE16334). We evaluated the data set that included transcriptomal analyses on RNA obtained from low-density bone marrow cells (BMC) from 20 patients with FA and 11 healthy volunteers, by seeking to identify changes in expression of over 22,000 genes, including a set of genes involved in: (i) bioenergetic pathways; (ii) antioxidant activities; (iii) response to stress and metal-chelating proteins; (iv) inflammation-related cytokines and (v) DNA repair.

View Article and Find Full Text PDF

Fanconi anemia (FA) is a rare genetic disease associated with deficiencies in DNA repair pathways. A body of literature points to a pro-oxidant state in FA patients, along with evidence for oxidative stress (OS) in the FA phenotype reported by in vitro, molecular, and animal studies. A highlight arises from the detection of mitochondrial dysfunction (MDF) in FA cell lines of complementation groups A, C, D2, and G.

View Article and Find Full Text PDF

Fanconi anaemia (FA) is a genetic disease featuring bone marrow failure, proneness to malignancies, and chromosomal instability. A line of studies has related FA to oxidative stress (OS). This review attempts to evaluate the evidence for FA-associated redox abnormalities in the literature from 1981 to 2010.

View Article and Find Full Text PDF

Purpose: CXC chemokine receptor 4 (CXCR4) and vascular endothelial growth factor (VEGF) are implicated in the metastatic process of malignant tumors. However, no data are currently available on the biological relationship between these molecules in colorectal cancer. We studied whether CXCR4 and VEGF expression could predict relapse and evaluated in vitro the contribution of CXCR4 in promoting clonogenic growth, VEGF secretion, and intercellular adhesion molecule-1 (ICAM-1) expression of colorectal cancer cells.

View Article and Find Full Text PDF

Adult soft tissue sarcomas (STSs) are a rare group of highly heterogeneous neoplasms arising in different tissues. They are locally aggressive and can produce recurrence and distant metastasis. The most common metastatic sites are lung, lymph nodes, liver, bone and soft tissues.

View Article and Find Full Text PDF