Microtubules are non-covalent dynamic polymers essential for the life of all eukaryotic cells. Their dynamic behavior is regulated by a large array of cellular effectors. In vitro microtubule assays have been instrumental in dissecting the mechanism of microtubule-associated proteins.
View Article and Find Full Text PDFCAMSAP/Patronins regulate microtubule minus-end dynamics. Their end specificity is mediated by their CKK domains, which we proposed recognise specific tubulin conformations found at minus ends. To critically test this idea, we compared the human CAMSAP1 CKK domain (HsCKK) with a CKK domain from Naegleria gruberi (NgCKK), which lacks minus-end specificity.
View Article and Find Full Text PDFSpastin and katanin sever and destabilize microtubules. Paradoxically, despite their destructive activity they increase microtubule mass in vivo. We combined single-molecule total internal reflection fluorescence microscopy and electron microscopy to show that the elemental step in microtubule severing is the generation of nanoscale damage throughout the microtubule by active extraction of tubulin heterodimers.
View Article and Find Full Text PDFMicrotubules polymerize and depolymerize stochastically, a behavior essential for cell division, motility, and differentiation. While many studies advanced our understanding of how microtubule-associated proteins tune microtubule dynamics in trans, we have yet to understand how tubulin genetic diversity regulates microtubule functions. The majority of in vitro dynamics studies are performed with tubulin purified from brain tissue.
View Article and Find Full Text PDFMicrotubules are polymers that cycle stochastically between polymerization and depolymerization, i.e. they exhibit "dynamic instability.
View Article and Find Full Text PDFGlutamylation, the most prevalent tubulin posttranslational modification, marks stable microtubules and regulates recruitment and activity of microtubule- interacting proteins. Nine enzymes of the tubulin tyrosine ligase-like (TTLL) family catalyze glutamylation. TTLL7, the most abundant neuronal glutamylase, adds glutamates preferentially to the β-tubulin tail.
View Article and Find Full Text PDFTubulin, the building block of microtubules, is subject to chemically diverse and evolutionarily conserved post-translational modifications that mark microtubules for specific functions in the cell. Here we describe in vitro methods for generating homogenous acetylated, glutamylated, or tyrosinated tubulin and microtubules using recombinantly expressed and purified modification enzymes. The generation of differentially modified microtubules now enables a mechanistic dissection of the effects of tubulin post-translational modifications on the dynamics and mechanical properties of microtubules as well as the behavior of motors and microtubule-associated proteins.
View Article and Find Full Text PDFTranscription factors of the nuclear factor kappaB (NF-κB) family arise through the combinatorial association of five distinct Rel subunits into functional dimers. However, not every dimer combination is observed in cells. The RelB subunit, for example, does not appear as a homodimer and forms heterodimers exclusively in combination with p50 or p52 subunits.
View Article and Find Full Text PDF