Secreted frizzled related protein-1 (sFRP-1) inhibitors have the potential to be used for the treatment of osteoporosis or other bone related disorders, since the level of sFRP-1 affects osteoblast apoptosis and proliferation. From high throughput screening, we have identified a class of iminooxothiazolidines as sFRP-1 inhibitors. Structure-activity relationships were established for various regions of the scaffold along with the biochemical characterization of this class to probe selectivity, binding and ex vivo activity.
View Article and Find Full Text PDFCanonical Wnt signaling has been demonstrated to increase bone formation, and Wnt pathway components are being pursued as potential drug targets for osteoporosis and other metabolic bone diseases. Deletion of the Wnt antagonist secreted frizzled-related protein (sFRP)-1 in mice activates canonical signaling in bone and increases trabecular bone formation in aged animals. We have developed small molecules that bind to and inhibit sFRP-1 in vitro and demonstrate robust anabolic activity in an ex vivo organ culture assay.
View Article and Find Full Text PDFInhibitor of secreted frizzled related protein-1 (sFRP-1) would be a novel potential osteogenic agent, since loss of sFRP-1 affects osteoblast proliferation, differentiation, and activity, resulting in improved bone mineral density, quality, and strength. We have identified small molecule diarylsulfone sulfonamide derivatives as sFRP-1 inhibitors. Structure-activity relationship generated for various regions of the scaffold was utilized to improve the biochemical profile, resulting in the identification of potent selective analogues, such as 16 with desirable pharmaceutical profile.
View Article and Find Full Text PDFRor2 is a receptor tyrosine kinase, the expression of which increases during differentiation of pluripotent stem cells to osteoblasts and then declines as cells progress to osteocytes. To test whether Ror2 plays a role in osteoblastogenesis, we investigated the effects of Ror2 overexpression and down-regulation on osteoblastic lineage commitment and differentiation. Expression of Ror2 in pluripotent human mesenchymal stem cells (hMSCs) by adenoviral infection caused formation of mineralized extracellular matrix, which is the ultimate phenotype of an osteogenic tissue.
View Article and Find Full Text PDFMechanisms controlling human bone formation remain to be fully elucidated. We have used differential display-polymerase chain reaction analysis to characterize osteogenic pathways in conditionally immortalized human osteoblasts (HOBs) representing distinct stages of differentiation. We identified 82 differentially expressed messages and found that the Wnt antagonist secreted frizzled-related protein (sFRP)-1 was the most highly regulated of these.
View Article and Find Full Text PDFRor2 is an orphan receptor tyrosine kinase that plays crucial roles in developmental morphogenesis, particularly of the skeleton. We have identified human Ror2 as a novel regulator of canonical Wnt signaling in osteoblastic (bone-forming) cells with selective activities, enhancing Wnt1 but antagonizing Wnt3. Immunoprecipitation studies demonstrated physical interactions between human Ror2 and mammalian Wnt1 and Wnt3.
View Article and Find Full Text PDFA series of pyrazolo[4,3-d]pyrimidine sulfonamides and pyrazolo[3,4-d]pyrimidine sulfonamides have been synthesized. These compounds increase transcription of a calcitonin-luciferase promoter and production of cellular calcitonin in a calcitonin-secretion/RIA assay with minimized phosphodiesterase type 4 inhibitory activity at 30 microM as compared to structurally related xanthine methylene ketones such as denbufyllene. These two series are notable examples of small molecules that act as CT-inducers, a method to potentially treat bone loss diseases.
View Article and Find Full Text PDF