Identifying the molecular networks that underlie Fibrous Dysplasia (FD) is key to understand the pathogenesis of the disease, to refine current diagnostic approaches and to develop efficacious therapies. In this study, we used the NanoString nCounter Analysis System to investigate the gene signature of a series of nine Formalin Fixed Decalcified and Paraffin-Embedded (FFDPE) bone biopsies from seven FD patients. We analyzed the expression level of 770 genes.
View Article and Find Full Text PDFWe compared the effects of a nitrogen-containing bisphosphonate (N-BP), zoledronic acid (ZA), and an anti-mouse RANKL antibody (anti-mRANKL Ab) on the bone tissue pathology of a transgenic mouse model of human fibrous dysplasia (FD). For comparison, we also reviewed the histological samples of a child with McCune-Albright syndrome (MAS) treated with Pamidronate for 3 years. EF1α-Gsα mice with FD-like lesions in the tail vertebrae were treated with either 0.
View Article and Find Full Text PDFFibrous dysplasia of bone/McCune-Albright syndrome (Polyostotic FD/MAS; OMIM#174800) is a crippling skeletal disease caused by gain-of-function mutations of G α. Enhanced bone resorption is a recurrent histological feature of FD and a major cause of fragility of affected bones. Previous work suggests that increased bone resorption in FD is driven by RANKL and some studies have shown that the anti-RANKL monoclonal antibody, denosumab, reduces bone turnover and bone pain in FD patients.
View Article and Find Full Text PDF