Publications by authors named "Annamaria Rapisarda"

The therapeutic efficacy of temozolomide (TMZ) is hindered by inherent and acquired resistance. Biomarkers such as MGMT expression and MMR proficiency are used as predictors of response. However, not all MGMT/MMR patients benefit from TMZ treatment, indicating a need for additional patient selection criteria.

View Article and Find Full Text PDF

Background: Small cell lung cancer (SCLC) is an aggressive neuroendocrine lung cancer. SCLC progression and treatment resistance involve epigenetic processes. However, links between SCLC DNA methylation and drug response remain unclear.

View Article and Find Full Text PDF

: The intracellular effects and overall efficacies of anticancer therapies can vary significantly by tumor type. To identify patterns of drug-induced gene modulation that occur in different cancer cell types, we measured gene-expression changes across the NCI-60 cell line panel after exposure to 15 anticancer agents. The results were integrated into a combined database and set of interactive analysis tools, designated the NCI Transcriptional Pharmacodynamics Workbench (NCI TPW), that allows exploration of gene-expression modulation by molecular pathway, drug target, and association with drug sensitivity.

View Article and Find Full Text PDF

Sepsis is characterized by a dysregulated inflammatory response to infection. Despite studies in mice, the cellular and molecular basis of human sepsis remains unclear and effective therapies are lacking. Blood monocytes serve as the first line of host defense and are equipped to recognize and respond to infection by triggering an immune-inflammatory response.

View Article and Find Full Text PDF

Purpose: Hypoxia-inducible factor-1 (HIF-1) facilitates the adaptation of normal and tumor tissues to oxygen deprivation. HIF-1 is frequently overexpressed in cancer cells, where it is involved in the upregulation of many genes necessary for survival. EZN-2968 is an antisense oligodeoxynucleotide that specifically targets HIF-1α, one of the subunits of HIF-1.

View Article and Find Full Text PDF

Background: Anti-angiogenic therapies such as bevacizumab upregulate hypoxia-inducible factor-1α (HIF-1α), a possible mechanism of drug resistance. Camptothecin analogues, including SN-38, have been shown to reduce the expression and transcriptional activity of HIF-1α in preclinical models. We hypothesized that co-administration of pegylated SN-38 (EZN-2208) may offset the induction of HIF-1α following bevacizumab treatment, resulting in synergistic antitumor effects.

View Article and Find Full Text PDF

IL-11 and its receptor, IL-11Ra, are expressed in human cancers; however, the functional role of IL-11 in tumor progression is not known. We found that IL11 is a hypoxia-inducible, VHL-regulated gene in human cancer cells and that expression of IL11 mRNA was dependent, at least in part, on HIF-1. A cooperative interaction between HIF-1 and AP-1 mediated transcriptional activation of the IL11 promoter.

View Article and Find Full Text PDF

New vessel formation (angiogenesis) is an essential physiological process for embryologic development, normal growth, and tissue repair. Angiogenesis is tightly regulated at the molecular level; however, this process is dysregulated in several pathological conditions such as cancer. The imbalance between pro- and antiangiogenic signaling molecules within tumors creates an abnormal vascular network that is characterized by dilated, tortuous, and leaky vessels.

View Article and Find Full Text PDF

Cancer cells rely on angiogenesis to fulfil their need for oxygen and nutrients; hence, agents targeting angiogenic pathways and mediators have been investigated as potential cancer drugs. Although this strategy has demonstrated delayed tumour progression--leading to progression-free survival and overall survival benefits compared with standard therapy--in some patients, the results are more modest than predicted. A significant number of patients either do not respond to antiangiogenic agents or fairly rapidly develop resistance to them, which raises questions about how resistance develops and how it can be overcome.

View Article and Find Full Text PDF

Purpose: Hypoxia-inducible factor 1 (HIF-1) α is frequently overexpressed in human tumors and is associated with angiogenesis and metastasis. Topotecan, a topoisomerase I inhibitor, has been shown to inhibit HIF-1α expression in preclinical models. We designed a pilot trial to measure HIF-1α inhibition in tumor biopsies from patients with advanced solid tumors overexpressing HIF-1α, after treatment with oral topotecan.

View Article and Find Full Text PDF

Aminoflavone (AF), the active component of a novel anticancer agent (AFP464) in phase I clinical trials, is a ligand of the aryl hydrocarbon receptor (AhR). AhR dimerizes with HIF-1beta/AhR, which is shared with HIF-1alpha, a transcription factor critical for the response of cells to oxygen deprivation. To address whether pharmacologic activation of the AhR pathway might be a potential mechanism for inhibition of HIF-1, we tested the effects of AF on HIF-1 expression.

View Article and Find Full Text PDF

Novel molecularly targeted therapies aim at exploiting oncogenic and non-oncogenic alterations that epitomize potential vulnerable aspects of tumorigenesis, with the hope to ultimately target cancer cells and spare normal tissues. Hypoxia, a decrease in tissue oxygen levels, is a feature of the tumor microenvironment that has attracted considerable interest for its potential contribution to increasing the tumorigenicity of cancer cells, by selecting more aggressive and metastatic clones and by activating pathways that contribute to cancer cells survival, all of which may have important therapeutic implications. In this article, we discuss how two therapeutic strategies, which have been developed over the last few years to target aspects dependent on or associated with intratumor hypoxia, may provide the rationale for a novel combination strategy aimed at blocking compensatory circuits that maintain cancer cells survival and propagate the cancer phenotype.

View Article and Find Full Text PDF

Intratumour hypoxia has long been considered a driving force of tumour progression and a negative prognostic factor in human cancers. The discovery of hypoxia inducible factors (HIFs), which mediate transcriptional responses to changes in oxygen levels, has renewed enthusiasm for the discovery and development of targeted therapies exploiting the hypoxic tumour microenvironment. In spite of an ever increasing number of putative small molecule inhibitors of HIF, only few progress through pre-clinical and early clinical development.

View Article and Find Full Text PDF

Inhibition of hypoxia inducible factor-1 (HIF-1) is an attractive therapeutic strategy to target the tumor microenvironment. However, HIF-1 inhibitors may have limited activity as single agents and combination therapies may be required. We tested the hypothesis that HIF-1 inhibition in a hypoxic-stressed tumor microenvironment, which could be generated by administration of antiangiogenic agents, may result in a more pronounced therapeutic effect.

View Article and Find Full Text PDF

Angiogenesis, a key process for the growth of human cancers, has recently been exploited for the development of a novel class of cancer therapeutics that was thought to have wide applications and not to induce resistance in the clinical setting. Indeed, anti-angiogenic therapy has become an important option for the management of several human malignancies. However, a significant number of patients either do not respond to anti-angiogenic agents or fairly rapidly develop resistance.

View Article and Find Full Text PDF

Hypoxia Inducible Factor-1 (HIF-1) is activated by a variety of stimuli, including inflammatory mediators. In this report we investigated the role that bacterial lipopolysaccharide (LPS) and hypoxia play in the regulation of HIF-1-dependent gene expression in macrophages. We report that murine macrophages stimulated with low concentrations of LPS (1-10 ng/ml) expressed significantly higher levels of inducible nitric oxide synthase (iNOS) mRNA when cultured under hypoxic compared to normoxic conditions.

View Article and Find Full Text PDF

Purpose: The discovery and development of small-molecule inhibitors of hypoxia-inducible factor-1 (HIF-1) is an attractive, yet challenging, strategy for the development of new cancer therapeutic agents. Here, we report on a novel tricyclic carboxamide inhibitor of HIF-1alpha, NSC 644221.

Experimental Design: We investigated the mechanism by which the novel compound NSC 644221 inhibited HIF-1alpha.

View Article and Find Full Text PDF

Hypoxia is a major pathophysiological condition for the induction of angiogenesis, which is a crucial aspect of growth in solid tumors. In mammalian cells, the transcriptional response to oxygen deprivation is largely mediated by hypoxia-inducible factor 1 (HIF-1), a heterodimer composed of HIF-1alpha and HIF-1beta subunits. However, the response of endothelial cells to hypoxia and the specific involvement of HIF-alpha subunits in this process are still poorly understood.

View Article and Find Full Text PDF

The extent of angiogenesis and/or vascular endothelial growth factor (VEGF) expression in neuroblastoma tumors correlates with metastases, N-myc amplification, and poor clinical outcome. Understanding the mechanisms regulating VEGF expression in neuroblastoma cells provides additional therapeutic options to control neuroblastoma tumor growth. VEGF mRNA is controlled by growth factors and hypoxia via the transcription factor hypoxia-inducible factor (HIF-1alpha).

View Article and Find Full Text PDF

In the presence of oxygen and iron, hypoxia-inducible factor (HIF-1alpha) is rapidly degraded via the prolyl hydroxylases (PHD)/VHL pathways. Given striking similarities between p53 and HIF-1alpha regulation, we previously suggested that HIF-1 transcriptionally initiates its own degradation and therefore inhibitors of transcription must induce HIF-1alpha. Under normoxia, while inducing p53, inhibitors of transcription did not induce HIF-1alpha.

View Article and Find Full Text PDF

We have previously shown that topotecan, a topoisomerase I poison, inhibits hypoxia-inducible factor (HIF)-1alpha protein accumulation by a DNA damage-independent mechanism. Here, we report that daily administration of topotecan inhibits HIF-1alpha protein expression in U251-HRE glioblastoma xenografts. Concomitant with HIF-1alpha inhibition, topotecan caused a significant tumor growth inhibition associated with a marked decrease of angiogenesis and expression of HIF-1 target genes in tumor tissue.

View Article and Find Full Text PDF

Recent studies have suggested a role for aminoacid catabolites as important regulators of macrophage (Mphi) activities. We reported previously that picolinic acid (PA), a tryptophan catabolite produced under inflammatory conditions and a costimulus with IFNgamma of Mphi effector functions, is a selective inducer of the Mphi inflammatory protein-1alpha (MIP-1alpha) and -1beta (MIPs), two CC-chemokines involved in the elicitation of the inflammatory reactions and in the development of the Th1 responses. In this study, we have investigated the effects of IFNgamma on PA-induced MIPs expression and secretion by mouse Mphi as well as the regulation of MIP-1alpha/beta receptor, CCR5, by both stimuli alone or in combination.

View Article and Find Full Text PDF

We have shown previously that the camptothecin analogue topotecan (TPT), a topoisomerase I (Top 1) poison, inhibits hypoxia-inducible factor 1 (HIF-1) transcriptional activity and HIF-1alpha protein accumulation in hypoxia-treated U251 human glioma cells. In this article, we demonstrate that TPT does not affect HIF-1alpha protein accumulation but inhibits its translation. In addition, we demonstrate that Top 1 is required for the inhibition of HIF-1alpha protein accumulation by TPT as shown by experiments performed using camptothecin-resistant cell lines with known Top 1 alterations.

View Article and Find Full Text PDF

Hypoxia, a local decrease in oxygen tension occurring in inflammatory and tumor lesions, modulates gene expression in macrophages. Because macrophages are important chemokine producers, we investigated the regulatory effects of hypoxia on macrophage-derived chemokines. We demonstrated that hypoxia inhibits the production of the macrophage and T lymphocyte chemotactic and activating factor, monocyte chemoattractant protein-1 (MCP-1).

View Article and Find Full Text PDF

HIF-1 is a key factor in cancer progression. Efforts are underway to identify and develop small molecules that inhibit HIF-1 transcriptional activity. What are the best targets and the best ways to develop HIF-1 inhibitors are open questions.

View Article and Find Full Text PDF