Publications by authors named "Annalisa Pianta"

BACKGROUNDAutoimmune diseases often have strong genetic associations with specific HLA-DR alleles. The synovial lesion in chronic inflammatory forms of arthritis shows marked upregulation of HLA-DR molecules, including in postinfectious Lyme arthritis (LA). However, the identity of HLA-DR-presented peptides, and therefore the reasons for these associations, has frequently remained elusive.

View Article and Find Full Text PDF

Objective: Obliterative microvascular lesions are found in the synovial tissue of ~50% of patients with post-antibiotic Lyme arthritis (LA) and correlate with autoantibodies to certain vascular antigens. In this study, we identified lymphocytes with cytotoxic potential that may also mediate this feature of synovial pathology.

Methods: The cytotoxic potential of lymphocytes and their T cell receptor (TCR) V gene usage were determined using samples of peripheral blood mononuclear cells (PBMCs) and synovial fluid mononuclear cells (SFMCs) from patients with antibiotic-responsive or post-antibiotic LA.

View Article and Find Full Text PDF

Objective: We previously identified HLA-DR-presented epitopes from a 27-kd protein of Prevotella copri (Pc) obtained from peripheral blood mononuclear cells (PBMCs) from 1 rheumatoid arthritis (RA) patient. Herein, we sought to identify other HLA-DR-presented Pc peptides and source proteins in PBMCs from additional patients to better understand Pc immune responses and RA disease pathogenesis.

Methods: Using tandem mass spectrometry, we searched for HLA-DR-presented Pc peptides in PBMCs from RA and Lyme arthritis (LA) patients.

View Article and Find Full Text PDF

In rheumatoid arthritis (RA), immunological triggers at mucosal sites, such as the gut microbiota, may promote autoimmunity that affects joints. Here, we used discovery-based proteomics to detect HLA-DR-presented peptides in synovia or peripheral blood mononuclear cells and identified 2 autoantigens, N-acetylglucosamine-6-sulfatase (GNS) and filamin A (FLNA), as targets of T and B cell responses in 52% and 56% of RA patients, respectively. Both GNS and FLNA were highly expressed in synovia.

View Article and Find Full Text PDF

Background: Control of Lyme disease is attributed predominantly to innate and adaptive T-helper 1 cell (TH1) immune responses, whereas the role of T-helper 17 cell (TH17) responses is less clear. Here we characterized these inflammatory responses in patients with erythema migrans (EM) or Lyme arthritis (LA) to elucidate their role early and late in the infection.

Methods: Levels of 21 cytokines and chemokines, representative of innate, TH1, and TH17 immune responses, were assessed by Luminex in acute and convalescent sera from 91 EM patients, in serum and synovial fluid from 141 LA patients, and in serum from 57 healthy subjects.

View Article and Find Full Text PDF

Objective: Prevotella copri, an intestinal microbe, may overexpand in stool samples from patients with new-onset rheumatoid arthritis (RA), but it is not yet clear whether the organism has immune relevance in RA pathogenesis.

Methods: HLA-DR-presented peptides (T cell epitopes) from P copri were sought directly in the patients' synovial tissue or peripheral blood mononuclear cell (PBMC) samples using tandem mass spectrometry. The antigenicity of peptides or their source proteins was examined in samples from the RA patients or comparison groups.

View Article and Find Full Text PDF

Infection-induced autoimmunity is thought to be a contributing factor in antibiotic-refractory Lyme arthritis, but studies of autoimmunity have been hindered by difficulty in identifying relevant autoantigens. We developed a novel approach that begins with the identification of T cell epitopes in synovial tissue using tandem mass spectrometry. Herein, we identified an immunogenic HLA-DR-presented peptide (T cell epitope) derived from the source protein matrix metalloproteinase-10 (MMP-10) from the synovium of a patient with antibiotic-refractory arthritis.

View Article and Find Full Text PDF

Niemann-Pick Types A and B (NPA/B) diseases are autosomal recessive lysosomal storage disorders caused by the deficient activity of acid sphingomyelinase (ASM) because of the mutations in the SMPD1 gene. Here, we provide a comprehensive updated review of already reported and newly identified SMPD1 variants. Among them, 185 have been found in NPA/B patients.

View Article and Find Full Text PDF

In this study, autoantibody responses to annexin A2 were found in 11-15% of 278 patients with Lyme disease, including in those with erythema migrans (EM), an early sign of the illness, and in those with antibiotic-responsive or antibiotic-refractory Lyme arthritis (LA), a late disease manifestation. In contrast, robust T cell reactivity to annexin A2 peptides was found only in patients with responsive or refractory LA. In LA patients, annexin A2 protein levels, which were higher in the refractory group, correlated with annexin A2 antibody levels in sera and synovial fluid.

View Article and Find Full Text PDF

To discover novel autoantigens associated with Lyme arthritis (LA), we identified T-cell epitopes presented in vivo by human leukocyte antigen (HLA)-DR molecules in patients' inflamed synovial tissue or joint fluid and tested each epitope for autoreactivity. Using this approach, we identified the highly expressed human protein, apolipoprotein B-100 (apoB-100), as a target of T- and B-cell responses in a subgroup of LA patients. Additionally, the joint fluid of these patients had markedly elevated levels of apoB-100 protein, which may contribute to its autoantigenicity.

View Article and Find Full Text PDF

Glycogen storage disease type II is a lysosomal storage disorder due to mutations of the GAA gene, which causes lysosomal alpha-glucosidase deficiency. Clinically, glycogen storage disease type II has been classified in infantile and late-onset forms. Most late-onset patients share the leaky splicing mutation c.

View Article and Find Full Text PDF

Background: ABCG2 protein overexpression and FLT3 internal tandem duplication (ITD) correlate with higher relapse rate and shorter disease-free survival (DFS) in acute myeloid leukemia (AML), but no data are available on the possible effect of concomitant presence of these 2 factors.

Methods: The authors analyzed the outcome of 166 cases of adult AML patients who were homogeneously treated with a fludarabine-based induction therapy.

Results: ABCG2 overexpression and FLT3-ITD were detected in 83 (50%) and 47 (28%) patients, respectively.

View Article and Find Full Text PDF

Nucleophosmin (NPM) is a multifunctional nucleolar protein that, depending on the context, can act as oncogene or tumour suppressor. Mutations of the NPM1 gene induce delocalization of NPM in acute myeloid leukaemia. Differently, in solid tumours, only NPM overexpression, but not delocalization, has been so far reported.

View Article and Find Full Text PDF

Nucleophosmin (NPM) is a protein that contributes to several cell functions. Depending on the context, it can act as an oncogene or tumor suppressor. No data are available on NPM expression in thyroid cells.

View Article and Find Full Text PDF

Over-expression of multidrug resistance (MDR) proteins PGP and BCRP has a negative prognostic impact in acute myeloid leukemia (AML) patients. Inclusion of fludarabine in induction chemotherapy increases remission rate in PGP over-expressing cases. We investigated the role of BCRP in 138 adult AML patients receiving induction therapy with fludarabine.

View Article and Find Full Text PDF

Nucleophosmin 1 (NPM1) is an abundant phosphoprotein mainly located in the nucleolus but also shuttling between the nucleus and cytoplasm. NPM1 has been proposed to be involved in synthesis and processing of ribosomal RNA, regulation of chromatin structure and transport of rRNA and ribosomal proteins. NPM1 gene is considered to be implicated in human cancer as it is a frequent target of genetic alterations, primarily in haematopoietic neoplasms.

View Article and Find Full Text PDF

Purpose: PAX6 mutations cause aniridia as well as other various congenital eye abnormalities. Aniridia can be due to both point mutations and chromosomal deletions/rearrangements. Therefore, a complete search for PAX6 gene alterations in aniridia subjects requires a technically complex approach involving the comprehension of fluorescence in situ hybridization (FISH) analysis.

View Article and Find Full Text PDF

Pax6 controls eye, pancreas and brain morphogenesis. In humans, heterozygous PAX6 mutations cause aniridia and various other congenital eye abnormalities. Most frequent PAX6 missense mutations are located in the paired domain (PD), while very few missense mutations have been identified in the homeodomain (HD).

View Article and Find Full Text PDF

Inhibitors of histone deacetylases (HDACs) activate the sodium iodide symporter (NIS) expression in thyroid tumor cells. In this study, mechanisms accounting for these effects were investigated. Various human thyroid tumor cell lines (ARO, BCPAP, FRO, TPC-1) were treated with the HDAC inhibitors Na butyrate (NaB) and tricostatin A (TSA), and the effects on the expression of NIS and several thyroid-specific transcription factors together with the activity of NIS promoter were evaluated.

View Article and Find Full Text PDF