Publications by authors named "Annalisa Izzo"

Glioma associated macrophages/microglia (GAMs) play an important role in glioblastoma (GBM) progression, due to their massive recruitment to the tumor site and polarization to a tumor promoting phenotype. GAMs secrete a variety of cytokines, which facilitate tumor cell growth and invasion, and prevent other immune cells from mounting an immune response against the tumor. Here, we demonstrate that zinc finger and BTB containing domain 18 (ZBTB18), a transcriptional repressor with tumor suppressive function in glioblastoma, impairs the production of key cytokines, which function as chemoattractant for GAMs.

View Article and Find Full Text PDF

Background: NPM1 is a phosphoprotein highly abundant in the nucleolus. However, additional nuclear functions have been attributed to NPM1, probably through interaction with other nuclear factors. DOT1L is one interaction partner of NPM1 that catalyzes methylation of histone H3 at lysine 79 (H3K79).

View Article and Find Full Text PDF

Forkhead box G1 (FOXG1) has important functions in neuronal differentiation and balances excitatory/inhibitory network activity. Thus far, molecular processes underlying FOXG1 function are largely unexplored. Here, we present a multiomics data set exploring how FOXG1 impacts neuronal maturation at the chromatin level in the mouse hippocampus.

View Article and Find Full Text PDF

Enhanced fatty acid synthesis is a hallmark of tumors, including glioblastoma. SREBF1/2 regulate the expression of enzymes involved in fatty acid and cholesterol synthesis. Yet, little is known about the precise mechanism regulating SREBP gene expression in glioblastoma.

View Article and Find Full Text PDF

The molecular basis underlying glioblastoma (GBM) heterogeneity and plasticity is not fully understood. Using transcriptomic data of human patient-derived brain tumor stem cell lines (BTSCs), classified based on GBM-intrinsic signatures, we identify the AP-1 transcription factor as a key regulator of the mesenchymal (MES) subtype. We provide a mechanistic basis to the role of the neurofibromatosis type 1 gene (), a negative regulator of the RAS/MAPK pathway, in GBM mesenchymal transformation through the modulation of expression.

View Article and Find Full Text PDF

During neuronal differentiation, the transcriptional profile and the epigenetic context of neural committed cells is subject to significant rearrangements, but a systematic quantification of global histone modification changes is still missing. Here, we show that H3K79me2 increases and H3K27ac decreases globally during in-vitro neuronal differentiation of murine embryonic stem cells. DOT1L mediates all three degrees of methylation of H3K79 and its enzymatic activity is critical to modulate cellular differentiation and reprogramming.

View Article and Find Full Text PDF

In mammals, histone H1 consists of a family of related proteins, including five replication-dependent (H1.1-H1.5) and two replication-independent (H1.

View Article and Find Full Text PDF

By performing high-throughput chromosome conformation capture analyses in embryonic stem cells depleted of the linker histone H1, Geeven and colleagues have uncovered exciting new evidence concerning a role for this histone in modulating three-dimensional genome architecture and chromatin organization.

View Article and Find Full Text PDF

Background: Linker histone H1 is a structural component of chromatin. It exists as a family of related proteins known as variants and/or subtypes. H1.

View Article and Find Full Text PDF

The linker histone H1 is a key player in chromatin organization, yet our understanding of the regulation of H1 functions by post-translational modifications is very limited. We provide here the first functional characterization of H1 acetylation. We show that H1.

View Article and Find Full Text PDF

Linker histone H1 is located on the surface of the nucleosome where it interacts with the linker DNA region and stabilizes the 30-nm chromatin fiber. Vertebrates have several different, relatively conserved subtypes of H1; however, the functional reason for this is unclear. We have previously shown that H1 can be reconstituted in Xenopus oocytes, cells that lack somatic H1, by cytosolic mRNA injection and incorporated into in vivo assembled chromatin.

View Article and Find Full Text PDF

Background: Covalent histone modifications are central to all DNA-dependent processes. Modifications of histones H3 and H4 are becoming well characterised, but knowledge of how H2A modifications regulate chromatin dynamics and gene expression is still very limited.

Results: To understand the function of H2A modifications, we performed a systematic analysis of the histone H2A methylation status.

View Article and Find Full Text PDF

Eukaryotic chromatin can be highly dynamic and can continuously exchange between an open transcriptionally active conformation and a compacted silenced one. Post-translational modifications of histones have a pivotal role in regulating chromatin states, thus influencing all chromatin dependent processes. Methylation is currently one of the best characterized histone modification and occurs on arginine and lysine residues.

View Article and Find Full Text PDF

The tails of histone proteins are central players for all chromatin-mediated processes. Whereas the N-terminal histone tails have been studied extensively, little is known about the function of the H2A C-terminus. Here, we show that the H2A C-terminal tail plays a pivotal role in regulating chromatin structure and dynamics.

View Article and Find Full Text PDF

Background: The linker histone H1 has a key role in establishing and maintaining higher order chromatin structure and in regulating gene expression. Mammals express up to 11 different H1 variants, with H1.2 and H1.

View Article and Find Full Text PDF

The linker histone H1 binds to the DNA entering and exiting the nucleosomal core particle and has an important role in establishing and maintaining higher order chromatin structures. H1 forms a complex family of related proteins with distinct species, tissue and developmental specificity. In higher eukaryotes all H1 variants have the same general structure, consisting of a central conserved globular domain and less conserved N-terminal and C-terminal tails.

View Article and Find Full Text PDF

Loss of function of the RNA helicase maleless (MLE) in Drosophila melanogaster leads to male-specific lethality due to a failure of X chromosome dosage compensation. MLE is presumably involved in incorporating the non-coding roX RNA into the dosage compensation complex (DCC), which is an essential but poorly understood requirement for faithful targeting of the complex to the X chromosome. Sequence comparison predicts several RNA-binding domains in MLE but their properties have not been experimentally verified.

View Article and Find Full Text PDF

The male-specific-lethal (MSL) proteins in Drosophila melanogaster serve to adjust gene expression levels in male flies containing a single X chromosome to equal those in females with a double dose of X-linked genes. Together with noncoding roX RNA, MSL proteins form the "dosage compensation complex" (DCC), which interacts selectively with the X chromosome to restrict the transcription-activating histone H4 acetyltransferase MOF (males-absent-on-the-first) to that chromosome. We showed previously that MSL3 is essential for the activation of MOF's nucleosomal histone acetyltransferase activity within an MSL1-MOF complex.

View Article and Find Full Text PDF

DNA methylation and chromatin modification operate along a common pathway to repress transcription; accordingly, several experiments demonstrate that the effects of DNA methylation can spread in cis and do not require promoter modification. In order to investigate the molecular details of the inhibitory effect of methylation, we microinjected into Xenopus oocytes a series of constructs containing a human CpG-rich sequence which has been differentially methylated and cloned at different positions relative to a specific promoter. The parameters influencing the diffusion of gene silencing and the importance of histone deacetylation in the spreading effect were analyzed.

View Article and Find Full Text PDF