Imatinib, the first tyrosine kinase inhibitor (TKI) for the treatment of chronic myeloid leukemia (CML), improves overall survival (OS), but the introduction of newer TKIs requires the definition of the optimal first-line TKI for newly diagnosed Philadelphia chromosome-positive (Ph+) chronic-phase (CP) CML. This systematic review of randomized controlled trials (RCTs) compares the efficacy and safety of imatinib vs second-generation (dasatinib, nilotinib, bosutinib) and third-generation TKIs (ponatinib) in adults with newly diagnosed Ph+ CP CML, concentrating on OS, progression-free survival (PFS), and hematological and nonhematological adverse events. The quality of the evidence was assessed using the Grading of Recommendations, Assessment, Development and Evaluation (GRADE) method.
View Article and Find Full Text PDFWe identified that the chemical linkage of the anticancer drug doxorubicin onto squalene, a natural lipid precursor of the cholesterol's biosynthesis, led to the formation of squalenoyl doxorubicin (SQ-Dox) nanoassemblies of 130-nm mean diameter, with an original "loop-train" structure. This unique nanomedicine demonstrates: (i) high drug payload, (ii) decreased toxicity of the coupled anticancer compound, (iii) improved therapeutic response, (iv) use of biocompatible transporter material, and (v) ease of preparation, all criteria that are not combined in the currently available nanodrugs. Cell culture viability tests and apoptosis assays showed that SQ-Dox nanoassemblies displayed comparable antiproliferative and cytotoxic effects than the native doxorubicin because of the high activity of apoptotic mediators, such as caspase-3 and poly(ADP-ribose) polymerase.
View Article and Find Full Text PDFTransition metal complexes provide a promising avenue for designing new therapeutic and diagnostic agents. In particular, ruthenium(II) polypyridyl complexes are useful for studying cellular uptake, due to their easy synthesis and unique photophysical properties. Dyes are frequently combined with material substrates to modulate their properties, enhance stability, reduce toxicity, and improve delivery.
View Article and Find Full Text PDF1,1',2-Trisnorsqualenoic acid was conjugated to paclitaxel to obtain the squalenoyl-paclitaxel prodrug with the aim to improve the incorporation in phospholipid bilayers. Differential scanning calorimetry technique was employed to compare the interaction of squalenoyl-paclitaxel prodrug and free paclitaxel with phospholipid bilayers. The possibility of using lipid vesicles as carrier for the prodrug was also evaluated.
View Article and Find Full Text PDFUsing the anticancer compound paclitaxel as a model drug, this study investigates the potential of the squalenoylation technology (i.e., bioconjugation with the natural lipid squalene) in addressing the drug ability and delivery issues of poorly soluble therapeutic agents.
View Article and Find Full Text PDF