Publications by authors named "Annalisa Facchini"

Purpose: To analyze the results of an outpatient clinic with a multidisciplinary team and educational support for patients with late-stage CKD (lsCKD), to check its possible effect on their outcomes.

Methods: Longitudinal cohort study on patients followed up in the MaReA (Malattia Renale Avanzata = CKD5) outpatient clinic at ASST Spedali Civili of Brescia from 2005 to 2015 for at least six months. Trajectory of renal function over time has been evaluated only in those patients with at least four estimations of eGFR before referring to MaReA.

View Article and Find Full Text PDF

Background: Inflammation and increased erythropoiesis stimulating agents (ESA) requirement are frequently associated in patients on dialysis. On-line hemodiafiltration (ol-HDF), putting together high levels of diffusion, and convection could improve both conditions. However, it is still not known which depurative component plays a major role in determining this result.

View Article and Find Full Text PDF

Hydroxytyrosol (HT), a phenolic compound mainly derived from olives, has been proposed as a nutraceutical useful in prevention or treatment of degenerative diseases. In the present study we have evaluated the ability of HT to counteract the appearance of osteoarthritis (OA) features in human chondrocytes. Pre-treatment of monolayer cultures of chondrocytes with HT was effective in preventing accumulation of reactive oxidant species (ROS), DNA damage and cell death induced by H2O2 exposure, as well as the increase in the mRNA level of pro-inflammatory, matrix-degrading and hypertrophy marker genes, such as iNOS, COX-2, MMP-13, RUNX-2 and VEGF.

View Article and Find Full Text PDF

The first step in skeleton development is the condensation of mesenchymal precursors followed by any of two different types of ossification, depending on the type of bone segment: in intramembranous ossification, the bone is deposed directly in the mesenchymal anlagen, whereas in endochondral ossification, the bone is deposed onto a template of cartilage that is subsequently substituted by bone. Polyamines and polyamine-related enzymes have been implicated in bone development as global regulators of the transcriptional and translational activity of stem cells and pivotal transcription factors. Therefore, it is tempting to investigate their use as a tool to improve regenerative medicine strategies in orthopedics.

View Article and Find Full Text PDF

Background: The non-canonical NF-κB activating kinase IKKα, encoded by CHUK (conserved-helix-loop-helix-ubiquitous-kinase), has been reported to modulate pro- or anti- inflammatory responses, cellular survival and cellular differentiation. Here, we have investigated the mechanism of action of IKKα as a novel effector of human and murine chondrocyte extracellular matrix (ECM) homeostasis and differentiation towards hypertrophy.

Methodology/principal Findings: IKKα expression was ablated in primary human osteoarthritic (OA) chondrocytes and in immature murine articular chondrocytes (iMACs) derived from IKKα(f/f):CreERT2 mice by retroviral-mediated stable shRNA transduction and Cre recombinase-dependent Lox P site recombination, respectively.

View Article and Find Full Text PDF

The molecular mechanisms underlying spermine osteo-inductive activity on human adipose-derived stem cells (ASCs) grown in 3-dimensional (3D) cultures were investigated. Spermine belongs to the polyamine family, naturally occurring, positively charged polycations that are able to control several cellular processes. Spermine was used at a concentration close to that found in platelet-rich plasma (PRP), an autologous blood product containing growth and differentiation factors, which has recently become popular in in vitro and in vivo bone healing and engineering.

View Article and Find Full Text PDF

Apoptosis is a programmed cell death that plays a critical role in cell homeostasis. In particular, apoptosis in cardiomyocytes is involved in several cardiovascular diseases including heart failure. Recently autophagy has emerged as an important modulator of programmed cell death pathway.

View Article and Find Full Text PDF

Chondrocyte cell death can contribute to cartilage degeneration in articular diseases, such as osteoarthritis (OA). Sulforaphane (SFN), a natural compound derived from cruciferous aliment, is well known as an anti-carcinogen, but according to recent evidence it also shows cytoprotective effects on a variety of non-tumoral cells. Therefore we have tested the ability of SFN to protect chondrocytes from cell death in vitro.

View Article and Find Full Text PDF

Recent studies report that the primary transmitter of sympathetic nervous system norepinephrine (NE), which is actively produced in failing human heart, is able to induce apoptosis of rat cardiomyocytes. Apoptotic cell death of cardiomyocytes is involved in several cardiovascular diseases including ischemia, hypertrophy and heart failure, therefore representing a potential therapeutic target. The natural occurring polyamines, putrescine, spermidine and spermine, are biogenic amines involved in many cellular processes, including apoptosis.

View Article and Find Full Text PDF

Objective: To link matrix metalloproteinase 13 (MMP-13) activity and extracellular matrix (ECM) remodeling to alterations in regulatory factors leading to a disruption in chondrocyte homeostasis.

Methods: MMP-13 expression was ablated in primary human chondrocytes by stable retrotransduction of short hairpin RNA. The effects of MMP-13 knockdown on key regulators of chondrocyte differentiation (SOX9, runt-related transcription factor 2 [RUNX-2], and beta-catenin) and angiogenesis (vascular endothelial growth factor [VEGF]) were scored at the protein level (by immunohistochemical or Western blot analysis) and RNA level (by real-time polymerase chain reaction) in high-density monolayer and micromass cultures under mineralizing conditions.

View Article and Find Full Text PDF

We have been investigating the effects of natural polyamines and polyamine analogues on the survival and apoptosis of chondrocytes, which are cells critical for cartilage integrity. Treatment of human C-28/I2 chondrocytes with N(1),N(11)-diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, rapidly induced spermidine/spermine N(1)-acetyltransferase (SSAT) and spermine oxidase (SMO), key enzymes of polyamine catabolism and down-regulated ornithine decarboxylase, the first enzyme of polyamine biosynthesis, thus depleting all main polyamines within 24 h. The treatment with DENSPM did not provoke cell death and caspase activation when given alone for 24 h, but caused a caspase-3 and -9 dependent apoptosis in chondrocytes further exposed to cycloheximide (CHX).

View Article and Find Full Text PDF

Chondrocyte survival is closely linked to cartilage integrity, and forms of chondrocyte apoptotic death can contribute to cartilage degeneration in articular diseases. Since growing evidence also implicates polyamines in the control of cell death, we have been investigating the role of polyamine metabolism in chondrocyte survival and apoptosis. Treatment of human C-28/I2 chondrocytes with N(1),N(11)-diethylnorspermine (DENSPM), a polyamine analogue with clinical relevance as an experimental anticancer agent, inhibited polyamine biosynthesis and induced polyamine catabolism, thus rapidly depleting all main polyamines.

View Article and Find Full Text PDF

Objective: Osteoarthritic (OA) chondrocytes behave in an intrinsically deregulated manner, characterized by chronic loss of healthy cartilage and inappropriate differentiation to a hypertrophic-like state. IKKalpha and IKKbeta are essential kinases that activate NF-kappaB transcription factors, which in turn regulate cell differentiation and inflammation. This study was undertaken to investigate the differential roles of each IKK in chondrocyte differentiation and hypertrophy.

View Article and Find Full Text PDF

CXCR2 ligands contribute to chondrocyte hypertrophy and apoptosis, important determinants in cartilage pathophysiology. We unraveled the kinetics of signaling, biochemical, transcriptional, and morphological events triggered by GROalpha in human osteoarthritic chondrocytes kept in three-dimensional culture. p38 MAPK activation was assessed with a highly sensitive ELISA.

View Article and Find Full Text PDF

Chondrocyte apoptosis can be an important contributor to cartilage degeneration, thereby making it a potential therapeutic target in articular diseases. To search for new approaches to limit chondrocytic cell death, we investigated the requirement of polyamines for apoptosis favored by tumor necrosis factor-alpha (TNF), using specific polyamine biosynthesis inhibitors in human chondrocytes. The combined treatment of C-28/I2 chondrocytes with TNF and cycloheximide (CHX) resulted in a prompt effector caspase activation and internucleosomal DNA fragmentation.

View Article and Find Full Text PDF

Among several extracellular messengers tested, lysophosphatidic acid (LPA) was able to cause the most marked induction of ornithine decarboxylase (ODC) in serum-starved human T/C-28a2 chondrocytes. LPA also induced the activation/phosphorylation of Src, Akt and p44/42 MAPK, and the translocation of PKC-delta from cytosol to membrane coupled to its tyrosine phosphorylation. Experiments with selective signaling inhibitors indicate that LPA leads to Src activation through Gi protein-coupled receptors.

View Article and Find Full Text PDF

The activation of the NF-kappaB pathway by pro-inflammatory cytokines, such as tumor necrosis factor-alpha (TNFalpha), can be an important contributor for the re-programming of chondrocyte gene expression, thereby making it a therapeutic target in articular diseases. To search for new approaches to limit cartilage damage, we investigated the requirement of polyamines for NF-kappaB activation by TNFalpha in human C-28/I2 chondrocytes, using alpha-difluoromethylornithine (DFMO), a specific polyamine biosynthesis inhibitor. The NF-kappaB pathway was dissected by using pharmacological inhibitors or by expressing a transdominant IkappaBalpha super repressor.

View Article and Find Full Text PDF

Background: Previous studies have shown that obesity is characterized by a sympathetic overactivity coupled with an insulin resistance state and a baroreflex impairment. The present study was set out to compare the effects of peripheral versus central obesity on sympathetic, metabolic and reflex function.

Methods: In 36 lean subjects (age 35.

View Article and Find Full Text PDF

Objective: To determine whether in hypertension and in heart failure the occurrence of ventricular arrhythmias is associated with alterations in sympathetic drive and baroreflex function.

Design And Methods: We studied 28 untreated essential hypertensives (age, 53.0 +/- 1.

View Article and Find Full Text PDF

According to several studies, green tea and individual catechins can inhibit the induction of ornithine decarboxylase (ODC), the key enzyme in the biosynthesis of polyamines. It has been suggested that the inhibition of ODC induction may offer an explanation to the anticancer and chemopreventive activities of green tea. In the present study, however, treatment of bladder carcinoma ECV304 cells with green tea extract (GTE) was not able to reduce the induction of ODC by fetal calf serum.

View Article and Find Full Text PDF

The objective of this 12-week double-blind randomized multicentre study was to compare the efficacy and tolerability of nebivolol, a recently developed beta-blocking agent with vasodilating properties, to the classical beta-blocker atenolol. After a placebo run-in phase, 205 mild-to-moderate middle-age essential hypertensives were randomized to either nebivolol 5 mg daily (n = 105) or atenolol 100 mg daily (n = 100) over a period of 12 weeks. The primary endpoint of the study was the change in sitting systolic and diastolic blood pressure (SBP and DBP respectively) from baseline to week 12 of treatment.

View Article and Find Full Text PDF

Cardiac myocytes undergo apoptosis under condition of ischemia. Little is known, however, about the molecular pathways that mediate this response. We show that serum deprivation and hypoxia, components of ischemia in vivo, resulted in apoptosis of rat ventricular myoblast cells H9c2.

View Article and Find Full Text PDF

The regulatory role of protein kinase C (PKC) delta isoform in the stimulation of phospholipase D (PLD) by sphingosine-1-phosphate (SPP) in a human-airway epithelial cell line (CFNPE9o(-)) was revealed by using antisense oligodeoxynucleotide to PKCdelta, in combination with the specific inhibitor rottlerin. Cell treatment with antisense oligodeoxynucleotide, but not with sense oligodeoxynucleotide, completely eliminated PKCdelta expression and resulted in the strong inhibition of SPP-stimulated phosphatidic acid formation. Indeed, among the PKCalpha, beta, delta, epsilon and zeta isoforms expressed in these cells, only PKCdelta was activated on cell stimulation with SPP, as indicated by translocation into the membrane fraction.

View Article and Find Full Text PDF