Increased mechanical stresses of the fibroatheroma cap tissue is a crucial risk factor on the pathogenesis of asymptomatic coronary artery disease events. Moreover, both numerical and analytical studies have shown that microcalcifications (μCalcs) located in the fibrous cap can multiply the cap tissue stress by a factor of 2-7. This stress amplification depends on the ratio of the gap between particles (h) and their diameter (D) when they are aligned along the tensile axis.
View Article and Find Full Text PDFBackground: The mechanical rupture of an atheroma cap may initiate a thrombus formation, followed by an acute coronary event and death. Several morphology and tissue composition factors have been identified to play a role on the mechanical stability of an atheroma, including cap thickness, lipid core stiffness, remodeling index, and blood pressure. More recently, the presence of microcalcifications (μCalcs) in the atheroma cap has been demonstrated, but their combined effect with other vulnerability factors has not been fully investigated.
View Article and Find Full Text PDFBiomed Phys Eng Express
August 2022
. Laboratory models of human arterial tissues are advantageous to examine the mechanical response of blood vessels in a simplified and controllable manner. In the present study, we investigated three silicone-based materials for replicating the mechanical properties of human arteries documented in the literature.
View Article and Find Full Text PDFThe study of damage and rupture of soft tissues using a tensile testing system is essential to understand the limits of mechanical behavior and loss of function in diseased tissues. However, commercial material testing systems are often expensive and may not be fully suitable for rupture tests of small samples. While several research laboratories have developed custom, less expensive, uniaxial or biaxial devices, there is a need for an open source, inexpensive, accurate and easy to customize biaxial material testing system to perform rupture tests in small soft samples.
View Article and Find Full Text PDFOsteogenesis imperfecta (OI or brittle bone disease) is a group of genetic disorders of the connective tissues caused mainly by mutations in the genes encoding collagen type I. Clinical manifestations of OI include skeletal fragility, bone deformities, and severe functional disabilities, such as hearing loss. Progressive hearing loss, usually beginning in childhood, affects approximately 70% of people with OI with more than half of the cases involving the inner ear.
View Article and Find Full Text PDFDefining the relationship between maternal care, sensory development and brain gene expression in neonates is important to understand the impact of environmental challenges during sensitive periods in early life. In this study, we used a selection approach to test the hypothesis that variation in maternal licking and grooming (LG) during the first week of life influences sensory development in Wistar rat pups. We tracked the onset of the auditory brainstem response (ABR), the timing of eye opening (EO), middle ear development with micro-CT X-ray tomography, and used qRT-PCR to monitor changes in gene expression of the hypoxia-sensitive pathway and neurotrophin signaling in pups reared by low-LG or high-LG dams.
View Article and Find Full Text PDFBiomech Model Mechanobiol
February 2021
Vascular stenting is a common intervention for the treatment for atherosclerotic plaques. However, stenting still has a significant rate of restenosis caused by intimal hyperplasia formation. In this study, we evaluate whether stent overexpansion leads to Vasa Vasorum (VV) compression, which may contribute to vascular wall hypoxia and restenosis.
View Article and Find Full Text PDFHearing is an extremely complex phenomenon, involving a large number of interrelated variables that are difficult to measure in vivo. In order to investigate such process under simplified and well-controlled conditions, models of sound transmission have been developed through many decades of research. The value of modeling the hearing system is not only to explain the normal function of the hearing system and account for experimental and clinical observations, but to simulate a variety of pathological conditions that lead to hearing damage and hearing loss, as well as for development of auditory implants, effective ear protections and auditory hazard countermeasures.
View Article and Find Full Text PDFMeasurements of perilymph hydrodynamics in the human cochlea are scarce, being mostly limited to the fluid pressure at the basal or apical turn of the scalae vestibuli and tympani. Indeed, measurements of fluid pressure or volumetric flow rate have only been reported in animal models. In this study we imaged the human ear at 6.
View Article and Find Full Text PDFObjective: To investigate the impact of posttraumatic humeral shaft malalignment on the ability to position the hand in space.
Methods: Two unique models were created: a cadaveric model and a computerized 3-dimensional (3D) model. In the cadaveric model, a midshaft transverse osteotomy of the humerus was created to simulate fracture.
Introduction: Micro-CT analysis is a powerful technique for a non-invasive evaluation of the morphometric parameters of trabecular bone samples. This elaboration requires a previous binarization of the images. A problem which arises from the binarization process is the partial volume artifact.
View Article and Find Full Text PDF