Endocrine-disrupting chemicals (EDCs) are known contributors to breast cancer development. Exposures to EDCs commonly occur through food packaging, cookware, fabrics, and personal care products, as well as external environmental sources. Increasing evidence highlights disparities in EDC exposure across racial/ethnic groups, yet breast cancer research continues to lack the inclusion necessary to positively impact treatment response and overall survival in socially disadvantaged populations.
View Article and Find Full Text PDFThe chicken gastrointestinal tract (GIT) has a complex, biodiverse microbial community of ~ 9 million bacterial genes plus archaea and fungi that links the host diet to its health. This microbial population contributes to host physiology through metabolite signaling while also providing local and systemic nutrients to multiple organ systems. In a homeostatic state, the host-microbial interaction is symbiotic; however, physiological issues are associated with dysregulated microbiota.
View Article and Find Full Text PDFFor poultry producers, chronic low-grade intestinal inflammation has a negative impact on productivity by impairing nutrient absorption and allocation of nutrients for growth. Understanding the triggers of chronic intestinal inflammation and developing a non-invasive measurement is crucial to managing gut health in poultry. In this study, we developed two novel models of low-grade chronic intestinal inflammation in broiler chickens: a chemical model using dextran sodium sulfate (DSS) and a dietary model using a high non-starch polysaccharide diet (NSP).
View Article and Find Full Text PDFAs the demand for alternatives to antibiotic growth promoters (AGP) increases in food animal production, phytobiotic compounds gain popularity because of their ability to mimic the desirable bioactive properties of AGP. Chestnut tannins (ChT) are one of many phytobiotic compounds used as feed additives, particularly in South America, for broilers because of its favorable antimicrobial and growth promotion capabilities. Although studies have observed the microbiological and immunologic effects of ChT, there is a lack of studies evaluating the metabolic function of ChT.
View Article and Find Full Text PDFPrevious studies have shown a tissue immune phenotype-altering event occurring on days 2 and 4 in the ceca post- challenge. To evaluate the involvement of the cecal microbiota in the phenotype reprogramming, we hypothesized that the addition of subtherapeutic bacitracin (BMD) will affect the cecal microbiota. Therefore, the objective of this study was to determine if the antibiotic-mediated changes in the microbiota composition influenced the immune phenotype induced by infection of the chicken cecum.
View Article and Find Full Text PDFThe intestinal tract harbors a diverse community of microbes that have co-evolved with the host immune system. Although many of these microbes execute functions that are critical for host physiology, the host immune system must control the microbial community so that the dynamics of this interdependent relationship is maintained. To facilitate host homeostasis, the immune system ensures that the microbial load is tolerated, but anatomically contained, while remaining reactive to microbial invasion.
View Article and Find Full Text PDF