Objective: While essential oils have many applications in medicine, not many studies have been done in the past to address issues of active targeting, enhancing bioavailability and reducing toxicity at higher concentrations. Herein, we used Fmoc-3F-Phe amino acid hydrogels to address such issues by encapsulating essential oils, Zanthoxylum armatum and Cinnamomum camphora, in its system and allowing sustained-release of these oils onto bacterial assays of E. coli ATCC 25922, P.
View Article and Find Full Text PDFFluorenylmethoxycarbonyl-protected phenylalanine (Fmoc-Phe) derivatives are a privileged class of molecule that spontaneously self-assemble into hydrogel fibril networks. Fmoc-Phe-derived hydrogels are typically formed by dilution of the hydrogelator from an organic cosolvent into water, by dissolution of the hydrogelator under basic aqueous conditions followed by adjustment of the pH with acid, or by other external triggering forces, including sonication and heating. These conditions complicate biological applications of these hydrogels.
View Article and Find Full Text PDFLow molecular weight agents that undergo self-assembly into fibril networks with hydrogel properties are promising biomaterials. Most low molecular weight hydrogelators are discovered empirically or serendipitously due to imperfect understanding of the mechanisms of self-assembly, the packing structure of self-assembled materials, and how the self-assembly process corresponds to emergent hydrogelation. Herein, the mechanisms of self-assembly and hydrogelation of N-fluorenylmethoxycarbonyl diphenylalanine (Fmoc-PhePhe), a well-studied low molecular weight hydrogelator, is probed by systematic comparison with derivatives in which Phe residues are replaced by corresponding N-benzyl glycine peptoid (Nphe) analogs.
View Article and Find Full Text PDFFmoc-3F-Phe-Arg-NH2 and Fmoc-3F-Phe-Asp-OH dipeptides undergo coassembly to form two-component nanofibril hydrogels. These hydrogels support the viability and growth of NIH 3T3 fibroblast cells. The supramolecular display of Arg and Asp at the nanofibril surface effectively mimics the integrin-binding RGD peptide of fibronectin, without covalent connection between the Arg and Asp functionality.
View Article and Find Full Text PDF