Publications by authors named "Annabelle Mery"

AMPK is a highly conserved sensor of cellular energy status that is activated under conditions of low intracellular ATP. AMPK responds to energy stress by suppressing cell growth and biosynthetic processes, in part through its inhibition of the rapamycin-sensitive mTOR (mTORC1) pathway. AMPK phosphorylation of the TSC2 tumor suppressor contributes to suppression of mTORC1; however, TSC2-deficient cells remain responsive to energy stress.

View Article and Find Full Text PDF

Muscle LIM protein (MLP) is a cytoskeletal protein located at the Z-disc of sarcomeres. Mutations in the human MLP gene are associated with hypertrophic and dilated cardiomyopathy. MLP has been proposed to be a key player in the stretch-sensing response, but the molecular mechanisms underlying its function in normal and diseased cardiac muscle have not been established.

View Article and Find Full Text PDF

Plastocyanin is a small blue copper protein that shuttles electrons as part of the photosynthetic redox chain. Its redox behavior is changed at low pH as a result of protonation of the solvent-exposed copper-coordinating histidine. Protonation and subsequent redox inactivation could have a role in the down regulation of photosynthesis.

View Article and Find Full Text PDF

Embryonic stem (ES) cells represent a source for cell-based regenerative therapies of heart failure. The pluripotency and the plasticity of ES cells allow them to be committed to a cardiac lineage following treatment with growth factors of the transforming growth factor (TGF)-beta superfamily. We describe a protocol designed to turn on expression of cardiac-specific genes in undifferentiated murine ES cells stimulated with BMP2 and/or TGF-beta.

View Article and Find Full Text PDF

Mutations of genes encoding contractile proteins are responsible for familial hypertrophic cardiomyopathies. Understanding the process of differentiation of cardiomyocytes carrying a mutated protein is a crucial step towards potential treatments of inherited cardiac disorders. Embryonic Stem (ES) cells which faithfully recapitulate in vitro the process of cardiac cell differentiation can be genetically modified to incorporate a mutation mimicking a cardiomyopathy.

View Article and Find Full Text PDF

In the adult, the heart rate is driven by spontaneous and repetitive depolarizations of pacemaker cells to generate a firing of action potentials propagating along the conduction system and spreading into the ventricles. In the early embryo before E9.5, the pacemaker ionic channel responsible for the spontaneous depolarization of cells is not yet functional.

View Article and Find Full Text PDF

Over the past decade, cell transplantation has been recognized as a mean of repairing infarcted myocardium. Both adult stem cells and differentiated cells have yielded encouraging results with regard to engraftment into postinfarction scars. However, these cells now feature serious restrictions.

View Article and Find Full Text PDF

Confocal microscopy offers important advantages compared to conventional epifluorescence microscopy. It works as an "optical microtome" leading to a accurate image resolution of a defined focal plane. Furthermore, the addition of a Nipkow disk on the confocal microscope greatly accelerates the image acquisition, up to 30 frames per second.

View Article and Find Full Text PDF

Macromolecules are transported in and out of the nucleus through nuclear pores. It is poorly understood how these megadalton conduits support nucleocytoplasmic traffic during genetic reprogramming associated with cell commitment to a specific lineage. Murine embryonic stem cells were differentiated into cardiomyocytes within embryoid bodies, and contracting cells expressing myocardial-specific proteins were isolated from the mesodermal layer.

View Article and Find Full Text PDF

Calreticulin (crt) is an ubiquitously expressed and multifunctional Ca(2+)-binding protein that regulates diverse vital cell functions, including Ca(2+) storage in the ER and protein folding. Calreticulin deficiency in mice is lethal in utero due to defects in heart development and function. Herein, we used crt(-/-) embryonic stem (ES) cells differentiated in vitro into cardiac cells to investigate the molecular mechanisms underlying heart failure of knockout embryos.

View Article and Find Full Text PDF

We have previously shown that expression of active Rac1 and Cdc4Hs inhibits skeletal muscle cell differentiation. We show here, by bromodeoxyuridine incorporation and cyclin D1 expression, that the expression of active Rac1 and Cdc42Hs but not RhoA impairs cell cycle exit of L6 myoblasts cultured in differentiation medium. Furthermore, expression of activated forms of Rac1 and Cdc42Hs elicits the loss of cell contact inhibition and anchorage-dependent growth as measured by focus forming activity and growth in soft agar.

View Article and Find Full Text PDF