BNC105 is a tubulin targeting compound that selectively disrupts vasculature within solid tumors. The severe tumor hypoxia and necrosis that ensues translates to short term tumor growth inhibition. We sought to identify the molecular and cellular events activated following BNC105 treatment that drives tumor recovery.
View Article and Find Full Text PDFBNC105P is a tubulin polymerisation inhibitor that selectively disrupts tumour vasculature and suppresses cancer cell proliferation. This agent has exhibited preclinical and phase I activity in Malignant Pleural Mesothelioma (MPM). This phase II, single arm trial investigated the efficacy and safety of BNC105P as second line therapy in MPM.
View Article and Find Full Text PDFA structure-activity relationship (SAR) guided design of novel tubulin polymerization inhibitors has resulted in a series of benzo[b]furans with exceptional potency toward cancer cells and activated endothelial cells. The potency of early lead compounds has been substantially improved through the synergistic effect of introducing a conformational bias and additional hydrogen bond donor to the pharmacophore. Screening of a focused library of potent tubulin polymerization inhibitors for selectivity against cancer cells and activated endothelial cells over quiescent endothelial cells has afforded 7-hydroxy-6-methoxy-2-methyl-3-(3,4,5-trimethoxybenzoyl)benzo[b]furan (BNC105, 8) as a potent and selective antiproliferative.
View Article and Find Full Text PDFPurpose: To determine the recommended phase II dose and evaluate the safety and toxicity profile and pharmacokinetic (PK) and pharmacodynamic (PD) effects of BNC105P, an inhibitor of tubulin polymerization that has vascular disrupting and antiproliferative effects.
Experimental Design: BNC105P was administered as a 10-minute infusion on days 1 and 8 of a 21-day cycle in a first-in-human phase I study. A dynamic accelerated dose titration method was used for dose escalation.
Vascular disruption agents (VDA) cause occlusion of tumor vasculature, resulting in hypoxia-driven tumor cell necrosis. Tumor vascular disruption is a therapeutic strategy of great potential; however, VDAs currently under development display a narrow therapeutic margin, with cardiovascular toxicity posing a dose-limiting obstacle. Discovery of new VDAs, which display a wider therapeutic margin, may allow attainment of improved clinical outcomes.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
August 2004
Angiogenesis is a major therapeutic target. Ideal drug targets are genes expressed only in endothelial cells (ECs) or only during the angiogenic process. Here, we describe a gene, p73RhoGAP (p73), that has both of these properties.
View Article and Find Full Text PDF