Purpose: Advancements in minimally invasive technologies to decrease postoperative morbidity and recovery times represent a large opportunity for mitral valve repair operations. However, current technologies are unable to replicate gold standard surgical neochord implantation.
Methods: We developed a novel neochordal repair device, Minimally Invasive Ventricular Anchoring Neochordoplasty (MIVAN), which operates via transcatheter, trans-septal anchoring to the posterior ventricular wall.
Fatigue testing of mechanical components is important for designing safe implantable medical prosthetics, and accelerated systems can be used to increase the speed of evaluation. We developed a platform for accelerated testing of linear force applications of cardiac devices, called the Fatigue Acceleration System Tester (FAST). FAST operates using a core translation mechanism, converting motor-driven rotary motion to linear actuation.
View Article and Find Full Text PDFSystolic anterior motion (SAM) of the mitral valve (MV) is a complex pathological phenomenon often occurring as an iatrogenic effect of surgical and transcatheter intervention. While the aortomitral angle has long been linked to SAM, the mechanistic relationship is not well understood. We developed the first ex vivo heart simulator capable of recreating native aortomitral biomechanics, and to generate models of SAM, we performed anterior leaflet augmentation and sequential undersized annuloplasty procedures on porcine aortomitral junctions (n = 6).
View Article and Find Full Text PDFObjective: To evaluate the suture rupture forces of commonly clinically utilized neochord repair techniques to identify the most biomechanically resistant most biomechanically resistant technique.
Methods: Several types of neochord techniques (standard interrupted neochordae, continuous running neochordae, and loop technique), numbers of neochordae, and suture calibers (polytetrafluoroethylene CV-3 to CV-6) were compared. To perform the tests, both ends of the neochordae were loaded in a tensile force analysis machine.
Objective: Suture pull-out remains a significant mechanism of long-term neochordal repair failure, as demonstrated by clinical reports on recurrent mitral valve regurgitation and need for reoperation. The objective of this study was to provide a quantitative comparison of suture pull-out forces for various neochordal implantation locations.
Methods: Posterior leaflets were excised from fresh porcine mitral valves (n = 54) and fixed between two 3-dimensional-printed plates.
Purpose: Rheumatic heart disease is a major cause of mitral valve (MV) dysfunction, particularly in disadvantaged areas and developing countries. There lacks a critical understanding of the disease biomechanics, and as such, the purpose of this study was to generate the first ex vivo porcine model of rheumatic MV disease by simulating the human pathophysiology and hemodynamics.
Methods: Healthy porcine valves were altered with heat treatment, commissural suturing, and cyanoacrylate tissue coating, all of which approximate the pathology of leaflet stiffening and thickening as well as commissural fusion.
The Ross procedure using the inclusion technique with anticommissural plication (ACP) is associated with excellent valve hemodynamics and favorable leaflet kinematics. The objective was to evaluate individual pulmonary cusp's biomechanics and fluttering by including coronary flow in the Ross procedure using an ex vivo three-dimensional-printed heart simulator. Ten porcine and five human pulmonary autografts were harvested from a meat abattoir and heart transplant patients.
View Article and Find Full Text PDFInfection with the novel coronavirus, severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2), may cause viral pneumonia and acute respiratory distress syndrome (ARDS). Treatment of ARDS often requires mechanical ventilation and may take weeks for resolution. In areas with a large outbreaks, there may be shortages of ventilators available.
View Article and Find Full Text PDFAnnuloplasty ring choice and design are critical to the long-term efficacy of mitral valve (MV) repair. DynaRing is a selectively compliant annuloplasty ring composed of varying stiffness elastomer segments, a shape-set nitinol core, and a cross diameter filament. The ring provides sufficient stiffness to stabilize a diseased annulus while allowing physiological annular dynamics.
View Article and Find Full Text PDFObjective: Neochordal implantation is a common form of surgical mitral valve (MV) repair. However, neochord length is assessed using static left ventricular pressurization, leading surgeons to evaluate leaflet coaptation and valve competency when the left ventricle is dilating instead of contracting physiologically, referred to as diastolic phase inversion (DPI). We hypothesize that the difference in papillary muscle (PM) positioning between DPI and physiologic systole results in miscalculated neochord lengths, which might affect repair performance.
View Article and Find Full Text PDFBackground: Mitral annuloplasty rings restore annular dimensions to increase leaflet coaptation, serving a fundamental component in mitral valve repair. However, biomechanical evaluations of annuloplasty rings are lacking. We aim to biomechanically analyze flexible and rigid annuloplasty rings using an ex vivo mitral annular dilation model.
View Article and Find Full Text PDFPurpose: One major challenge in generating reproducible aortic valve (AV) repair results is the inability to assess AV morphology under physiologic pressure. A transparent intraoperative AV visualization device was designed and manufactured.
Description: This device comprises an open proximal end, a cantilevered edge to allow attachment of the device to the aorta or graft, a distal viewing surface, and 2 side ports for fluid delivery and air removal.
Objectives: The severity of acute papillary muscle (PM) rupture varies according to the extent and site of the rupture. However, the haemodynamic effects of different rupture variations are still poorly understood. Using a novel ex vivo model, we sought to study acute PM rupture to improve clinical management.
View Article and Find Full Text PDFIschemic mitral regurgitation (IMR) is particularly challenging to repair with lasting durability due to the complex valvular and subvalvular pathologies resulting from left ventricular dysfunction. Ex vivo simulation is uniquely suited to quantitatively analyze the repair biomechanics, but advancements are needed to model the nuanced IMR disease state. Here we present a novel IMR model featuring a dilation device with precise dilatation control that preserves annular elasticity to enable accurate ex vivo analysis of surgical repair.
View Article and Find Full Text PDFObjective: The inclusion technique was developed to reinforce the pulmonary autograft to prevent dilation after the Ross procedure. Anticommissural plication (ACP), a modification technique, can reduce graft size and create neosinuses. The objective was to evaluate pulmonary valve biomechanics using the inclusion technique in the Ross procedure with and without ACP.
View Article and Find Full Text PDFUnlabelled: Resource-scarce regions with serious COVID-19 outbreaks do not have enough ventilators to support critically ill patients, and these shortages are especially devastating in developing countries. To help alleviate this strain, we have designed and tested the accessible low-barrier in vivo-validated economical ventilator (ALIVE Vent), a COVID-19-inspired, cost-effective, open-source, in vivo-validated solution made from commercially available components. The ALIVE Vent operates using compressed oxygen and air to drive inspiration, while two solenoid valves ensure one-way flow and precise cycle timing.
View Article and Find Full Text PDFThe field of heart valve biomechanics is a rapidly expanding, highly clinically relevant area of research. While most valvular pathologies are rooted in biomechanical changes, the technologies for studying these pathologies and identifying treatments have largely been limited. Nonetheless, significant advancements are underway to better understand the biomechanics of heart valves, pathologies, and interventional therapeutics, and these advancements have largely been driven by crucial , and modeling technologies.
View Article and Find Full Text PDFJ Thorac Cardiovasc Surg
October 2022
Objective: New transapical minimally invasive artificial chordae implantation devices are a promising alternative to traditional open-heart repair, with the potential for decreased postoperative morbidity and reduced recovery time. However, these devices can place increased stress on the artificial chordae. We designed an artificial papillary muscle to alleviate artificial chordae stresses and thus increase repair durability.
View Article and Find Full Text PDFPapillary muscles serve as attachment points for chordae tendineae which anchor and position mitral valve leaflets for proper coaptation. As the ventricle contracts, the papillary muscles translate and rotate, impacting chordae and leaflet kinematics; this motion can be significantly affected in a diseased heart. In heart simulation, an explanted valve is subjected to physiologic conditions and can be adapted to mimic a disease state, thus providing a valuable tool to quantitatively analyse biomechanics and optimize surgical valve repair.
View Article and Find Full Text PDFBackground: Many graft configurations are clinically used for valve-sparing aortic root replacement, some specifically focused on recapitulating neosinus geometry. However, the specific impact of such neosinuses on valvular and root biomechanics and the potential influence on long-term durability are unknown.
Methods: Using a custom 3-dimenstional-printed heart simulator with porcine aortic roots (n=5), the anticommissural plication, Stanford modification, straight graft (SG), Uni-Graft, and Valsalva graft configurations were tested in series using an incomplete counterbalanced measures design, with the native root as a control, to mitigate ordering effects.
Objective: The objective was to design and evaluate a clinically relevant, novel ex vivo bicuspid aortic valve model that mimics the most common human phenotype with associated aortic regurgitation.
Methods: Three bovine aortic valves were mounted asymmetrically in a previously validated 3-dimensional-printed left heart simulator. The non-right commissure and the non-left commissure were both shifted slightly toward the left-right commissure, and the left and right coronary cusps were sewn together.
The need for personal protective equipment during the COVID-19 pandemic is far outstripping our ability to manufacture and distribute these supplies to hospitals. In particular, the medical N95 mask shortage is resulting in healthcare providers reusing masks or utilizing masks with filtration properties that do not meet medical N95 standards. We developed a solution for immediate use: a mask adaptor, outfitted with a quarter section of an N95 respirator that maintains the N95 seal standard, thereby quadrupling the N95 supply.
View Article and Find Full Text PDFCell sheet technology using UpCell™ (Thermo Fisher Scientific, Roskilde, Denmark) plates is a modern tool that enables the rapid creation of single-layered cells without using extracellular matrix (ECM) enzymatic digestion. Although this technique has the advantage of maintaining a sheet of cells without needing artificial scaffolds, these cell sheets remain extremely fragile. Collagen, the most abundant ECM component, is an attractive candidate for modulating tissue mechanical properties given its tunable property.
View Article and Find Full Text PDF