Background And Objectives: Selvigaltin (GB1211), an orally available small molecule galectin-3 inhibitor developed as a treatment for liver fibrosis and cirrhosis, was evaluated to assess the effect of hepatic impairment on its pharmacokinetics and safety to address regulatory requirements.
Methods: GULLIVER-2 was a Phase Ib/IIa three-part study. Parts 1 and 3 had single-dose, open-label designs assessing pharmacokinetics (plasma [total and unbound] and urine), safety, and tolerability of 100 mg oral selvigaltin in participants with moderate (Child-Pugh B, Part 1) or severe (Child-Pugh C, Part 3) hepatic impairment, compared with healthy-matched participants (n = 6 each).
Little is known about the impact of age on the processes governing human intestinal drug absorption. The Ussing chamber is a system to study drug transport across tissue barriers, but it has not been used to study drug absorption processes in children. This study aimed to explore the feasibility of the Ussing chamber methodology to assess pediatric intestinal drug absorption.
View Article and Find Full Text PDFDespite much progress in regulations to improve paediatric drug development, there remains a significant need to develop better medications for children. For the design of oral dosage forms, a detailed understanding of the specific gastrointestinal (GI) conditions in children of different age categories and how they differ from GI conditions in adults is essential. Several review articles have been published addressing the ontogeny of GI characteristics, including luminal conditions in the GI tract of children.
View Article and Find Full Text PDFMost drugs are administered to children orally. An information gap remains on the protein abundance of small intestinal drug-metabolizing enzymes (DMEs) and drug transporters (DTs) across the pediatric age range, which hinders precision dosing in children. To explore age-related differences in DMEs and DTs, surgical leftover intestinal tissues from pediatric and adult jejunum and ileum were collected and analyzed by targeted quantitative proteomics for apical sodium-bile acid transporter, breast cancer resistance protein (BCRP), monocarboxylate transporter 1 (MCT1), multidrug resistance protein 1 (MDR1), multidrug resistance-associated protein (MRP) 2, MRP3, organic anion-transporting polypeptide 2B1, organic cation transporter 1, peptide transporter 1 (PEPT1), CYP2C19, CYP3A4, CYP3A5, UDP glucuronosyltransferase (UGT) 1A1, UGT1A10, and UGT2B7.
View Article and Find Full Text PDFPurpose: More accurate prediction of the extent of drug brain exposure in early drug discovery and understanding potential species differences could help to guide medicinal chemistry and avoid unnecessary animal studies. Hence, the aim of the current study was to validate the use of a P-gp transfected LLC-PK1 model to predict the unbound brain-to-plasma concentration ratio (Kp) in rats and humans.
Methods: MOCK-, Mdr1a- and MDR1-transfected LLC-PK1 monolayers were applied in a transwell setup to quantify the bidirectional transport for 12 specific P-gp substrates, 48 UCB drug discovery compounds, 11 compounds with reported rat in situ brain perfusion data and 6 compounds with reported human Kp values.
Early assessment of metabolism pathways of new chemical entities guides the understanding of drug-drug interactions. Selective enzyme inhibitors are indispensable in CYP reaction phenotyping. The most commonly applied CYP2C19 inhibitor, omeprazole, lacks selectivity.
View Article and Find Full Text PDFThe release and absorption profile of an oral medication is influenced by the physicochemical properties of the drug and its formulation, as well as by the anatomy and physiology of the gastrointestinal (GI) tract. During drug development the bioavailability of a new drug is typically assessed in early clinical studies in a healthy adult population. However, many disease conditions are associated with an alteration of the anatomy and/or physiology of the GI tract.
View Article and Find Full Text PDFThe dissolution, intestinal absorption and presystemic metabolism of a drug depend on its physicochemical characteristics but also on numerous physiological (e.g. gastrointestinal pH, volume, transit time, morphology) and biochemical factors (e.
View Article and Find Full Text PDFQuantifying the multiple processes which control and modulate the extent of oral bioavailability for drug candidates is critical to accurate projection of human pharmacokinetics (PK). Understanding how gut wall metabolism and hepatic elimination factor into first-pass clearance of drugs has improved enormously. Typically, the cytochrome P450s, uridine 5'-diphosphate-glucuronosyltransferases and sulfotransferases, are the main enzyme classes responsible for drug metabolism.
View Article and Find Full Text PDFIntestinal metabolism can limit oral bioavailability of drugs and increase the risk of drug interactions. It is therefore important to be able to predict and quantify it in drug discovery and early development. In recent years, a plethora of models-in vivo, in situ and in vitro-have been discussed in the literature.
View Article and Find Full Text PDFThe purpose of this study was to evaluate the use of human intestinal tissue in Ussing chamber to predict oral and colonic drug absorption and intestinal metabolism. Data on viability, correlation between apparent permeability coefficients (P(app)) and fraction absorbed (f(a)) after oral and colonic administration, regional permeability, active uptake and efflux of drugs as well as intestinal metabolism were compiled from experiments using 159 human donors. Permeability coefficients for up to 28 drugs were determined using one or several of four intestinal regions: duodenum, jejunum, ileum and colon and 10 drugs were studied bidirectionally.
View Article and Find Full Text PDFThe hepatic SV40 large T-antigen immortalized human liver epithelial (THLE) cell line and sublines transfected with cytochromes P450 (P450s) are increasingly being used for evaluation of potential drug-induced liver injury. So far, the available information on transporter and enzyme expression in these transfected cell systems is scattered. The purpose of this study was to characterize THLE cell lines with respect to transporter and enzyme expression.
View Article and Find Full Text PDFThe in vitro metabolic stability assays are indispensable for screening the metabolic liability of new chemical entities (NCEs) in drug discovery. Intrinsic clearance (CL(int)) values from liver microsomes and/or hepatocytes are frequently used to assess metabolic stability as well as to quantitatively predict in vivo hepatic plasma clearance (CL(H)). An often used approximation is the so called well-stirred model which has gained widespread use.
View Article and Find Full Text PDFThe effect of Pgp induction in rats by pregnenolone 16α-carbonitrile (PCN) (3 days, 35 mg/kg/d, p.o.) on digoxin pharmacokinetics and intestinal transport has been assessed.
View Article and Find Full Text PDFThe paracellular space defines the passive permeation of hydrophilic compounds in epithelia. The goal of this study was to characterise the paracellular permeation pathway in the human intestinal wall and differentiated epithelial cell models (MDCKII, Caco-2 and 2/4/A1). The permeabilities of hydrophilic polyethylene glycols (PEG) were investigated in diffusion chambers, and mass spectrometry was used to obtain accurate concentrations for each PEG molecule.
View Article and Find Full Text PDFCurr Opin Drug Discov Devel
July 2009
Physiologically based pharmacokinetics (PBPK) models are increasingly being used in the lead optimization (LO) process. Although there are currently few literature reports of the application of PBPK, the scope of PBPK modeling is expanding and there is a steady increase in the number of publications in this field. Recent publications covering four important areas of the application of PBPK modeling in LO have been reviewed.
View Article and Find Full Text PDFThiabendazole (TBZ) and its major metabolite 5-hydroxythiabendazole (5OH-TBZ) were screened for potential time-dependent inhibition (TDI) against CYP1A2. Screen assays were carried out in the absence and presence of NADPH. TDI was observed with both compounds, with k(inact) and K(I) values of 0.
View Article and Find Full Text PDFCaco-2 cells, widely used to study carrier mediated uptake and efflux mechanisms, are known to have different properties when cultured under different conditions. In this study, Caco-2 cells from 10 different laboratories were compared in terms of mRNA expression levels of 72 drug and nutrient transporters, and 17 other target genes, including drug metabolising enzymes, using real-time PCR. The rank order of the top five expressed genes was: HPT1>GLUT3>GLUT5>GST1A>OATP-B.
View Article and Find Full Text PDFThe lipophilic weak base amodiaquine is an antimalarial drug that has been in use for over 40 years. Little is known of amodiaquine's mechanism of transport across membranes. Transport experiments of amodiaquine in Caco-2 cells showed a low recovery of 30% and rapid disappearance from the apical chamber.
View Article and Find Full Text PDFInduction of drug enzyme activity in the intestine can strongly determine plasma levels of drugs. It is therefore important to predict drug-drug interactions in human intestine in vitro. We evaluated the applicability of human intestinal precision-cut slices for induction studies in vitro.
View Article and Find Full Text PDFThis study was designed to quantitatively assess the mRNA expression of 36 important drug transporters in human jejunum, colon, liver, and kidney. Expression of these transporters in human organs was compared with expression in commonly used cell lines (Caco-2, HepG2, and Caki-1) originating from these organs to assess their value as in vitro transporter system models, and was also compared with data obtained from the literature on expression in rat tissues to assess species differences. Transporters that were highly expressed in the intestine included HPT1, PEPT1, BCRP, MRP2, and MDR1, whereas, in the liver, OCT1, MRP2, OATP-C, NTCP and BSEP were the main transporters.
View Article and Find Full Text PDFA multivariate analysis of drugs on the Swedish market was the basis for the selection of a small, physicochemically diverse set of 24 drug compounds. Factors such as structural diversity, commercial availability, price, and a suitable analytical technique for quantification were considered in the selection. Lipophilicity, pKa, solubility, and permeability across human Caco-2 cell monolayers were measured for the compiled data set.
View Article and Find Full Text PDFPredictive in vitro methods to investigate drug metabolism in the human intestine using intact tissue are of high importance. Therefore, we studied the metabolic activity of human small intestinal and colon slices and compared it with the metabolic activity of the same human intestinal segments using the Ussing chamber technique. The metabolic activity was evaluated using substrates to both phase I and phase II reactions: testosterone, 7-hydroxycoumarin (7HC), and a mixture of cytochrome P450 (P450) substrates (midazolam, diclofenac, coumarin, and bufuralol).
View Article and Find Full Text PDFThe potential inhibitory effect on P-glycoprotein (Pgp) by antiparasitic drugs and natural compounds was investigated. Compounds were screened for Pgp interaction based on inhibition of Pgp mediated [3H]-taxol transport in Caco-2 cells. Bidirectional transport of selected inhibitors was further evaluated to identify potential Pgp substrates using the Caco-2 cells.
View Article and Find Full Text PDF