Background: Activated fibroblast-like synoviocytes (FLS) are drivers of synovitis and structural joint damage in rheumatoid arthritis (RA). Despite the use of disease-modifying drugs, only about 50% of RA patients reach remission in real-world settings. We used an unbiased approach to investigate the effects of standard-of-care methotrexate (MTX) and a Janus kinase inhibitor, tofacitinib (TOFA), on gene expression in RA-FLS, in order to identify untargeted disease mediators.
View Article and Find Full Text PDFBackground: Involvement of B cells in the pathogenesis of rheumatoid arthritis (RA) is supported by the presence of disease-specific autoantibodies and the efficacy of treatment directed against B cells. B cells that express low levels of or lack the B cell receptor (BCR) co-receptor CD21, CD21 B cells, have been linked to autoimmune diseases, including RA. In this study, we characterized the CD21 and CD21 B cell subsets in newly diagnosed, early RA (eRA) patients and investigated whether any of the B cell subsets were associated with autoantibody status, disease activity and/or joint destruction.
View Article and Find Full Text PDFBackground: The role of the lung for the initiation and progression of rheumatoid arthritis (RA) is still unclear. Up to 10% of RA patients develop interstitial lung disease which remains a clinical challenge. Understanding early disease mechanisms is of great importance.
View Article and Find Full Text PDFBackground: Rheumatoid arthritis (RA) is associated with development of generalized osteoporosis. Bone-degrading osteoclasts are derived from circulating precursor cells of monocytic lineage, and the intermediate monocyte population is important as osteoclast precursors in inflammatory conditions. T cells of various subsets are critical in the pathogenesis of both RA and associated osteoporosis, but so far, no studies have examined associations between circulating intermediate monocytes, T cell subsets and bone characteristics in patients with RA.
View Article and Find Full Text PDFAdiponectin is an adipokine with a modulatory role in metabolism and exerting both anti- and pro-inflammatory effects. Levels of adiponectin are increased in serum and synovial fluid from patients with rheumatoid arthritis (RA). Adiponectin is able to stimulate the production of different pro-inflammatory factors from peripheral blood mononuclear cells (PBMCs) and fibroblast-like synoviocytes (FLS) from subjects with established RA.
View Article and Find Full Text PDFBackground: The majority of CD4 T helper (Th) cells found in the synovial fluid (SF) of patients with rheumatoid arthritis (RA) express CXCR3, a receptor associated with Th1 cells. In blood, subsets of Th2 and Th17 cells also express CXCR3, but it is unknown if these cells are present in RA SF or how cytokines from these subsets affect cytokine/chemokine secretion by fibroblast-like synoviocytes (FLS) from patients with RA.
Methods: We examined the proportions of Th1, Th2, CXCR3Th2, Th17, CXCR3Th17, Th1Th17, peripheral T helper (TPh) and T follicular helper (TFh) cells in paired SF and blood, as well as the phenotype of TPh and TFh cells in RA SF (n = 8), by the use of flow cytometry.
Fibroblast-like synoviocytes (FLS) are joint-lining cells that promote rheumatoid arthritis (RA) pathology. Current disease-modifying antirheumatic agents (DMARDs) operate through systemic immunosuppression. FLS-targeted approaches could potentially be combined with DMARDs to improve control of RA without increasing immunosuppression.
View Article and Find Full Text PDFThe autoimmune regulator AIRE controls the negative selection of self-reactive T-cells as well as the induction of regulatory T-cells in the thymus by mastering the transcription and presentation of tissue restricted antigens (TRAs) in thymic cells. However, extrathymic AIRE expression of hitherto unknown clinical significance has also been reported. Genetic polymorphisms of have been associated with rheumatoid arthritis (RA), but no specific disease-mediating mechanism has been identified.
View Article and Find Full Text PDFBackground: A key feature of joints in rheumatoid arthritis (RA) is the formation of hyperplastic destructive pannus tissue, which is orchestrated by activated fibroblast-like synoviocytes (FLS). We have demonstrated that the RA risk gene and tumor suppressor Limb bud and heart development (LBH) regulates cell cycle progression in FLS. Methotrexate (MTX) is the first-line treatment for RA, but its mechanisms of action remain incompletely understood.
View Article and Find Full Text PDFObjective: To identify nonobvious therapeutic targets for rheumatoid arthritis (RA), we performed an integrative analysis incorporating multiple "omics" data and the Encyclopedia of DNA Elements (ENCODE) database for potential regulatory regions. This analysis identified the limb bud and heart development (LBH) gene, which has risk alleles associated with RA/celiac disease and lupus, and can regulate cell proliferation in RA. We identified a novel LBH transcription enhancer with an RA risk allele (rs906868 G [Ref]/T) 6 kb upstream of the LBH gene with a differentially methylated locus.
View Article and Find Full Text PDFObjective: Fibroblast-like synoviocytes (FLS) are key players in the synovial pathology of rheumatoid arthritis (RA). Currently, there is no treatment that specifically targets these aggressive cells. By combining 3 different "omics" data sets, i.
View Article and Find Full Text PDFThe lubricative, heavily glycosylated mucin-like synovial glycoprotein lubricin has previously been observed to contain glycosylation changes related to rheumatoid and osteoarthritis. Thus, a site-specific investigation of the glycosylation of lubricin was undertaken, in order to further understand the pathological mechanisms involved in these diseases. Lubricin contains an serine/threonine/proline (STP)-rich domain composed of imperfect tandem repeats (EPAPTTPK), the target for O-glycosylation.
View Article and Find Full Text PDFFms-like tyrosine kinase 3 ligand (Flt3L) is known as the primary differentiation and survival factor for dendritic cells (DCs). Furthermore, Flt3L is involved in the homeostatic feedback loop between DCs and regulatory T cell (Treg). We have previously shown that Flt3L accumulates in the synovial fluid in rheumatoid arthritis (RA) and that local exposure to Flt3L aggravates arthritis in mice, suggesting a possible involvement in RA pathogenesis.
View Article and Find Full Text PDFObjective: Human resistin has proinflammatory properties that activate NF-κB-dependent pathways, whereas its murine counterpart is associated with insulin resistance. The aim of this study was to examine potential cross-talk between resistin and insulin/insulin-like growth factor (IGF) signaling in rheumatoid arthritis (RA).
Methods: Levels of IGF-1, IGF binding protein 3, and resistin were measured in the blood and synovial fluid of 60 patients with RA and 39 healthy control subjects.
Introduction: Activated fibroblast-like synoviocytes (FLSs) in rheumatoid arthritis (RA) share many characteristics with tumour cells and are key mediators of synovial tissue transformation and joint destruction. The glycoprotein podoplanin is upregulated in the invasive front of several human cancers and has been associated with epithelial-mesenchymal transition, increased cell migration and tissue invasion. The aim of this study was to investigate whether podoplanin is expressed in areas of synovial transformation in RA and especially in promigratory RA-FLS.
View Article and Find Full Text PDF