Iron(III)-precipitates formed by the oxidation of dissolved Fe(II) are important sorbents for major and trace elements in aquatic and terrestrial systems. Their reductive dissolution in turn may result in the release of associated elements. We examined the reductive dissolution kinetics of an environmentally relevant set of Fe(II)-derived arsenate-containing Fe(III)-precipitates whose structure as function of phosphate (P) and silicate (Si) content varied between poorly-crystalline lepidocrocite, amorphous Fe(III)-phosphate, and Si-containing ferrihydrite.
View Article and Find Full Text PDFThe co-precipitation of arsenate (As(V)) with Fe(III)-precipitates is of great importance in water treatment and critically affects the fate of As in environmental systems. We studied the effects of dissolved phosphate (P; 0-1 mM), silicate (Si; 0 or 0.5 mM) and Ca (0, 0.
View Article and Find Full Text PDFWe investigated the speciation and extractability of Tl in soil developed from mineralized carbonate rock. Total Tl concentrations in topsoil (0-20 cm) of 100-1000 mg/kg are observed in the most affected area, subsoil concentrations of up to 6000 mg/kg Tl in soil horizons containing weathered ore fragments. Using synchrotron-based microfocused X-ray fluorescence spectrometry (μ-XRF) and X-ray absorption spectroscopy (μ-XAS) at the Tl L3-edge, partly Tl(I)-substituted jarosite and avicennite (Tl2O3) were identified as Tl-bearing secondary minerals formed by the weathering of a Tl-As-Fe-sulfide mineralization hosted in the carbonate rock from which the soil developed.
View Article and Find Full Text PDF