Background: IL-6 is an inflammatory cytokine that controls effector T cell responses but the mechanisms by which it controls allogeneic immune responses and vascular rejection that leads to transplant arteriosclerosis (TA) are poorly understood.
Methods: We have examined the mechanism by which IL-6 contributes to the pathogenesis of vascular rejection and TA using a murine aortic interposition model of vascular rejection.
Results: The absence of IL-6 production from artery graft cells reduced the development of vascular rejection and arteriosclerotic thickening.
Vascular rejection that leads to transplant arteriosclerosis (TA) is the leading representation of chronic heart transplant failure. In TA, the immune system of the recipient causes damage of the arterial wall and dysfunction of endothelial cells and smooth muscle cells. This triggers a pathological repair response that is characterized by intimal thickening and luminal occlusion.
View Article and Find Full Text PDFSolid organ transplantation is the only treatment for end-stage organ failure but this life-saving procedure is limited by immune-mediated rejection of most grafts. Blood vessels within transplanted organs are targeted by the immune system and the resultant vascular damage is a main contributor to acute and chronic graft failure. The vasculature is a unique tissue with specific immunological properties.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
June 2014
Objective: Bim is a proapoptotic Bcl-2 protein known to downregulate immune responses and to also be required for antigen-induced T-cell activation. However, it is not known how the effect of Bim on these offsetting processes determines the outcome of allogeneic immune responses. We have defined the role of Bim in regulating alloantigen-driven T-cell responses in a model of vascular rejection.
View Article and Find Full Text PDFThe nature of inflammatory signals determines the outcome of T cell responses. However, little is known about how inflammatory cytokines provided to human CD8 T cells during activation affects their susceptibility to post-activation cell death. We have examined and compared the effects of the inflammatory cytokine IL-12, as well as the combination of IL-1, IL-6, and IL-23 (IL-1/6/23) on the susceptibility of primary human CD8 T cells to post-activation cell death.
View Article and Find Full Text PDFArterioscler Thromb Vasc Biol
May 2011
Objective: CD155 is a cell surface protein that has recently been described to exert immune regulatory functions. We have characterized the expression of CD155 on human vascular endothelial cells (ECs) and examined its role in the regulation of T-cell activation.
Methods And Results: CD155 was expressed on resting human vascular ECs and was upregulated in an interferon-γ (IFNγ)-dependent manner.
Resident tissue macrophages (Mφs) continually survey the microenvironment, ingesting Ags and presenting them on their surface for recognition by T cells. Because these Ags can be either host cell- or pathogen-derived, Mφs must be able to distinguish whether a particular Ag should provoke an immune response or be tolerated. However, the mechanisms that determine whether Mφs promote or inhibit T cell activation are not well understood.
View Article and Find Full Text PDF