Antimicrobial peptides are considered promising candidates for the development of novel antimicrobial agents to combat infections by multi-drug-resistant (MDR) bacteria. Here, we describe the identification and characterization of the synthetic peptide TC19, derived from the human thrombocidin-1-derived peptide L3. Biophysical experiments into the interaction between TC19 and mimics of human and bacterial plasma membranes demonstrated that the peptide is highly selective for bacterial membranes.
View Article and Find Full Text PDFDevelopment of novel antimicrobial agents is a top priority in the fight against multidrug-resistant (MDR) and persistent bacteria. We developed a panel of synthetic antimicrobial and antibiofilm peptides (SAAPs) with enhanced antimicrobial activities compared to the parent peptide, human antimicrobial peptide LL-37. Our lead peptide SAAP-148 was more efficient in killing bacteria under physiological conditions in vitro than many known preclinical- and clinical-phase antimicrobial peptides.
View Article and Find Full Text PDFOver the past decades the use of medical devices, such as catheters, artificial heart valves, prosthetic joints, and other implants, has grown significantly. Despite continuous improvements in device design, surgical procedures, and wound care, biomaterial-associated infections (BAI) are still a major problem in modern medicine. Conventional antibiotic treatment often fails due to the low levels of antibiotic at the site of infection.
View Article and Find Full Text PDFA common belief is that the phylogeny of bacteria may reflect molecular functions and phenotypic characteristics, pointing towards phylogenetic conservatism of traits. Here, we tested this hypothesis for a large set of Acinetobacter strains. Members of the genus Acinetobacter are widespread in nature, demonstrate a high metabolic diversity and are resistant to several environmental stressors.
View Article and Find Full Text PDFOP-145, a synthetic antimicrobial peptide developed from a screen of the human cathelicidin LL-37, displays strong antibacterial activities and is--at considerably higher concentrations--lytic to human cells. To obtain more insight into its actions, we investigated the interactions between OP-145 and liposomes composed of phosphatidylglycerol (PG) and phosphatidylcholine (PC), resembling bacterial and mammalian membranes, respectively. Circular dichroism analyses of OP-145 demonstrated a predominant α-helical conformation in the presence of both membrane mimics, indicating that the different membrane-perturbation mechanisms are not due to different secondary structures.
View Article and Find Full Text PDFImplant-associated bone infections caused by antibiotic-resistant pathogens pose significant clinical challenges to treating physicians. Prophylactic strategies that act against resistant organisms, such as methicillin-resistant Staphylococcus aureus (MRSA), are urgently required. In the present study, we investigated the efficacy of a biodegradable Polymer-Lipid Encapsulation MatriX (PLEX) loaded with the antibiotic doxycycline as a local prophylactic strategy against implant-associated osteomyelitis.
View Article and Find Full Text PDFBurn wound infections are often difficult to treat due to the presence of multidrug-resistant bacterial strains and biofilms. Currently, mupirocin is used to eradicate methicillin-resistant Staphylococcus aureus (MRSA) from colonized persons; however, mupirocin resistance is also emerging. Since we consider antimicrobial peptides to be promising candidates for the development of novel anti-infective agents, we studied the antibacterial activities of a set of synthetic peptides against different strains of S.
View Article and Find Full Text PDFTreatment of patients with burn wound infections may become complicated by the presence of antibiotic resistant bacteria and biofilms. Herein, we demonstrate an in vitro thermal wound infection model using human skin equivalents (HSE) and biofilm-forming methicillin-resistant Staphylococcus aureus (MRSA) for the testing of agents to combat such infections. Application of a liquid nitrogen-cooled metal device on HSE produced reproducible wounds characterized by keratinocyte death, detachment of the epidermal layer from the dermis, and re-epithelialization.
View Article and Find Full Text PDFCryo-electron microscopy of vitrified biological samples can provide three-dimensional reconstructions of macromolecules and organelles within bacteria and cells at nanometer scale resolution, even in native conditions. Localization of specific structures and imaging of cellular dynamics in cellular cryo-electron microscopy is limited by (i) the use of cryo-fixation to preserve cellular structures, (ii) the restricted availability of electron dense markers to label molecules inside cells and (iii) the inherent low contrast of cryo electron microscopy. These limitations can be mitigated to a large extend by correlative light and electron microscopy, where the sample is imaged by both light and electron microscopy.
View Article and Find Full Text PDFAcinetobacter baumannii is an important nosocomial pathogen responsible for colonization and infection of critically ill patients. Its virulence attributes together with the condition of the host determine the pathogenicity of A. baumannii.
View Article and Find Full Text PDFAn understanding of why certain Acinetobacter species are more successful in causing nosocomial infections, transmission and epidemic spread in healthcare institutions compared with other species is lacking. We used genomic, phenotypic and virulence studies to identify differences between Acinetobacter species. Fourteen strains representing nine species were examined.
View Article and Find Full Text PDFDespite many reports documenting its epidemicity, little is known on the interaction of Acinetobacter baumannii with its host. To deepen our insight into this relationship, we studied persistence of and host response to different A. baumannii strains including representatives of the European (EU) clones I-III in a mouse pneumonia model.
View Article and Find Full Text PDFAcinetobacter baumannii can colonize body surfaces of hospitalized patients. From these sites, invasion into the host and spread to other patients and the hospital environment may occur. The eradication of the organism from the patient's skin is an important infection control strategy during epidemic and endemic episodes.
View Article and Find Full Text PDFBackground: The dramatic increase in antibiotic resistance and the recent manifestation in war trauma patients underscore the threat of Acinetobacter baumannii as a nosocomial pathogen. Despite numerous reports documenting its epidemicity, little is known about the pathogenicity of A. baumannii.
View Article and Find Full Text PDFAcinetobacter baumannii is a nosocomial pathogen responsible for outbreaks of infection worldwide. The factors associated with its ability to colonize/infect human hosts are largely unknown. Adherence to host cells is the first step in colonization/infection, which can be followed by biofilm formation.
View Article and Find Full Text PDFBackground: Helminth infections are prevalent in rural areas of developing countries and have in some studies been negatively associated with allergic disorders and atopy. In this context little is known of the molecular mechanisms of modulation involved. We have characterized the innate immune responses, at the molecular level, in children according to their helminth infection status and their atopic reactivity to allergens.
View Article and Find Full Text PDF