Trends Plant Sci
December 2024
TANDEM ZINC-FINGER/PLUS3 (TZP) is a nuclear-localized protein with multifaceted roles in modulating plant growth and development under diverse light conditions. The unique combination of two intrinsically disordered regions (IDRs), two zinc-fingers (ZFs), and a PLUS3 domain provide a platform for interactions with the photoreceptors phytochrome A (phyA) and phyB, light signaling components, and nucleic acids. TZP controls flowering and hypocotyl elongation by regulating gene expression and protein abundance in a blue, red, or far-red light-specific context.
View Article and Find Full Text PDFCurr Opin Plant Biol
November 2024
Light and temperature are two key environmental factors that control plant growth and adaptation by influencing biomolecular events. This review highlights the latest milestones on the role of light and high temperatures in modulating the epigenetic and epitranscriptomic landscape of Arabidopsis to trigger developmental and adaptive responses to a changing environment. Recent discoveries on how light and high temperature signals are integrated in the nucleus to modulate gene expression are discussed, as well as highlighting research gaps and future perspectives in further understanding how to promote plant resilience in times of climate change.
View Article and Find Full Text PDFThe plant nucleus provides a major hub for environmental signal integration at the chromatin level. Multiple light signaling pathways operate and exchange information by regulating a large repertoire of gene targets that shape plant responses to a changing environment. In addition to the established role of transcription factors in triggering photoregulated changes in gene expression, there are eminent reports on the significance of chromatin regulators and nuclear scaffold dynamics in promoting light-induced plant responses.
View Article and Find Full Text PDFUltraviolet-B (UV-B) irradiation (280-320 nm) is an integral part of sunlight and a pivotal environmental cue that triggers various plant responses, from photoprotection to photomorphogenesis and metabolic processes. UV-B is perceived by ULTRAVIOLET RESISTANCE 8 (UVR8), which orchestrates UV-B signal transduction and transcriptional control of UV-B-responsive genes. However, there is limited information on the molecular mechanism underlying the UV-B- and UVR8-dependent regulation of flowering time in plants.
View Article and Find Full Text PDFIntegration of temperature cues is crucial for plant survival and adaptation. Global warming is a prevalent issue, especially in modern agriculture, since the global rise in average temperature is expected to impact crop productivity worldwide. Hence, better understanding of the mechanisms by which plants respond to warmer temperatures is very important.
View Article and Find Full Text PDFLight triggers changes in plant nuclear architecture to control differentiation, adaptation, and growth. A series of genetic, molecular, and imaging approaches have revealed that the nucleus forms a hub for photo-induced protein interactions and gene regulatory events. However, the mechanism and function of light-induced nuclear compartmentalization is still unclear.
View Article and Find Full Text PDFLight and temperature shape the developmental trajectory and morphology of plants. Changes in chromatin organization and nuclear architecture can modulate gene expression and lead to short- and long-term plant adaptation to the environment. Here, we review recent reports investigating how changes in chromatin composition, structure, and topology modulate gene expression in response to fluctuating light and temperature conditions resulting in developmental and physiological responses.
View Article and Find Full Text PDFThe terrestrial environment is complex, with many parameters fluctuating on daily and seasonal basis. Plants, in particular, have developed complex sensory and signaling networks to extract and integrate information about their surroundings in order to maximize their fitness and mitigate some of the detrimental effects of their sessile lifestyles. Light and temperature each provide crucial insights on the surrounding environment and, in combination, allow plants to appropriately develop, grow and adapt.
View Article and Find Full Text PDF