Publications by authors named "Anna Zaykovskaya"

Azoloazine derivatives are known as promising small molecules that are potentially able to counteract a broad spectrum of RNA viruses including SARS-CoV-2. However, a pool of synthetic pathways to provide convenient structural modification of such compounds without de novo construction of the heterocyclic scaffold is rather limited so far. This work proposes an approach to the direct C(sp)-H functionalization of azolopyrimidine substrates with aromatic thiol residues, mediated by the iodine/persulfate reagent system.

View Article and Find Full Text PDF

The mouse paramyxovirus Sendai, which is capable of limited replication in human bronchial epithelial cells without causing disease, is well suited for the development of vector-based intranasal vaccines against respiratory infections, including SARS-CoV-2. Using the Moscow strain of the Sendai virus, we developed a vaccine construct, Sen-Sdelta(M), which expresses the full-length spike (S) protein of the SARS-CoV-2 delta variant. A single intranasal delivery of Sen-Sdelta(M) to Syrian hamsters and BALB/c mice induced high titers of virus-neutralizing antibodies specific to the SARS-CoV-2 delta variant.

View Article and Find Full Text PDF

This study presents a comprehensive comparison of the batch cooling crystallization performance of aqueous solutions containing sugars and sugar alcohols, namely, erythritol, glucose, xylitol, and xylose. Erythritol and xylitol are commonly used alternative sweeteners to replace sucrose. They can be obtained by fermentation-based bioprocesses, where glucose and xylose are typical raw materials.

View Article and Find Full Text PDF
Article Synopsis
  • The research focuses on finding effective agents against coronaviruses, specifically by synthesizing thiazolo-thiophenes based on usnic acid to inhibit SARS-CoV-2's main protease.
  • Certain modifications of the thiophene groups showed moderate antiviral activity, while others had no effect, with kinetic parameters evaluated for the most promising compound.
  • The most active compound exhibited strong binding to the protease and effective antiviral activity against various SARS-CoV-2 strains, aligning molecular dynamics results with experimental findings.
View Article and Find Full Text PDF

In December 2019, a new coronavirus, SARS-CoV-2, was found to in Wuhan, China. Cases of infection were subsequently detected in other countries in a short period of time, resulting in the declaration of the COVID-19 pandemic by the World Health Organization (WHO) on 11 March 2020. Questions about the impact of herd immunity of pre-existing immune reactivity to SARS-CoV-2 on COVID-19 severity, associated with the immunity to seasonal manifestation, are still to be resolved and may be useful for understanding some processes that precede the emergence of a pandemic virus.

View Article and Find Full Text PDF

In this study, we propose a full gamma-valerolactone (GVL) organosolv biorefinery concept including the utilization of all pulping streams, solvent recovery, and preliminary material and energy balances. GVL is a renewable and non-toxic solvent that fractionates woody biomass. The silver birch chips were pulped (45-65 wt% GVL, 150 °C, 2 h) under a series of acid-catalyzed conditions (5-12 kg HSO/t), and the fully bleached pulp was spun into fibers by the IONCELL® process and knitted into the fabric.

View Article and Find Full Text PDF

Despite the rapid development and approval of several COVID vaccines based on the full-length spike protein, there is a need for safe, potent, and high-volume vaccines. Considering the predominance of the production of neutralizing antibodies targeting the receptor-binding domain (RBD) of S-protein after natural infection or vaccination, it makes sense to choose RBD as a vaccine immunogen. However, due to its small size, RBD exhibits relatively poor immunogenicity.

View Article and Find Full Text PDF

Four different techniques for xylitol crystallization, namely cooling, evaporative, antisolvent, and combined antisolvent and cooling crystallization, were investigated regarding their influence on the product crystal properties. Various batch times and mixing intensities were studied, and the antisolvent used was ethanol. Real-time monitoring of the count rates of various chord length fractions and distributions using focused beam reflectance measurement was conducted.

View Article and Find Full Text PDF

Vaccination against SARS-CoV-2 and other viral infections requires safe, effective, and inexpensive vaccines that can be rapidly developed. DNA vaccines are candidates that meet these criteria, but one of their drawbacks is their relatively weak immunogenicity. Electroporation (EP) is an effective way to enhance the immunogenicity of DNA vaccines, but because of the different configurations of the devices that are used for EP, it is necessary to carefully select the conditions of the procedure, including characteristics such as voltage, current strength, number of pulses, etc.

View Article and Find Full Text PDF
Article Synopsis
  • * The study assessed how these derivatives inhibit the main protease of SARS-CoV-2 and their effectiveness against a pseudoviral system showcasing the virus's glycoprotein S.
  • * Findings indicated that usnic acid and its derivatives bind to a specific site on the glycoprotein S, suggesting a potential mechanism for their antiviral action.
View Article and Find Full Text PDF

In the present work we studied the antiviral activity of the home library of monoterpenoid derivatives using the pseudoviral systems of our development, which have glycoproteins of the SARS-CoV-2 virus strains Wuhan and Delta on their surface. We found that borneol derivatives with a tertiary nitrogen atom can exhibit activity at the early stages of viral replication. In order to search for potential binding sites of ligands with glycoprotein, we carried out additional biological tests to study the inhibition of the re-receptor-binding domain of protein S.

View Article and Find Full Text PDF

Currently, SARS-CoV-2 spike receptor-binding-domain (RBD)-based vaccines are considered one of the most effective weapons against COVID-19. During the first step of assessing vaccine immunogenicity, a mouse model is often used. In this paper, we tested the use of five experimental animals (mice, hamsters, rabbits, ferrets, and chickens) for RBD immunogenicity assessments.

View Article and Find Full Text PDF

Despite the fact that a range of vaccines against COVID-19 have already been created and are used for mass vaccination, the development of effective, safe, technological, and affordable vaccines continues. We have designed a vaccine that combines the recombinant protein and DNA vaccine approaches in a self-assembled particle. The receptor-binding domain (RBD) of the spike protein of SARS-CoV-2 was conjugated to polyglucin:spermidine and mixed with DNA vaccine (pVAXrbd), which led to the formation of particles of combined coronavirus vaccine (CCV-RBD) that contain the DNA vaccine inside and RBD protein on the surface.

View Article and Find Full Text PDF

The receptor-binding domain (RBD) of the protein S SARS-CoV-2 is considered to be one of the appealing targets for developing a vaccine against COVID-19. The choice of an expression system is essential when developing subunit vaccines, as it ensures the effective synthesis of the correctly folded target protein, and maintains its antigenic and immunogenic properties. Here, we describe the production of a recombinant RBD protein using prokaryotic (pRBD) and mammalian (mRBD) expression systems, and compare the immunogenicity of prokaryotic and mammalian-expressed RBD using a BALB/c mice model.

View Article and Find Full Text PDF

When developing drugs against SARS-CoV-2, it is important to consider the characteristics of patients with different co-morbidities. People infected with HIV-1 are a particularly vulnerable group, as they may be at a higher risk than the general population of contracting COVID-19 with clinical complications. For such patients, drugs with a broad spectrum of antiviral activity are of paramount importance.

View Article and Find Full Text PDF

To date, the 'one bug-one drug' approach to antiviral drug development cannot effectively respond to the constant threat posed by an increasing diversity of viruses causing outbreaks of viral infections that turn out to be pathogenic for humans. Evidently, there is an urgent need for new strategies to develop efficient antiviral agents with broad-spectrum activities. In this paper, we identified camphene derivatives that showed broad antiviral activities in vitro against a panel of enveloped pathogenic viruses, including influenza virus A/PR/8/34 (H1N1), Ebola virus (EBOV), and the Hantaan virus.

View Article and Find Full Text PDF

The stability of the new antifiloviral agent AS-358, which is a derivative of borneol and 3-(piperidin-1-yl)propanoic acid, was studied in the blood and blood plasma of rats in vitro. It was found that both in the blood and in the plasma stabilized by EDTA or heparin, the compound is rapidly hydrolyzed at the ester bond. When sodium fluoride was added to the whole blood, the decomposition of the compound was significantly slowed down, which made it possible to develop and validate a method for the quantitative determination of the agent in this matrix.

View Article and Find Full Text PDF

This work presents the design and synthesis of camphor, fenchone, and norcamphor N-acylhydrazone derivatives as a new class of inhibitors of the Hantaan virus, which causes haemorrhagic fever with renal syndrome (HFRS). A cytopathic model was developed for testing chemotherapeutics against the Hantaan virus, strain 76-118. In addition, a study of the antiviral activity was carried out using a pseudoviral system.

View Article and Find Full Text PDF

One of the key stages in the development of mRNA vaccines is their delivery. Along with liposome, other materials are being developed for mRNA delivery that can ensure both the safety and effectiveness of the vaccine, and also facilitate its storage and transportation. In this study, we investigated the polyglucin:spermidine conjugate as a carrier of an mRNA-RBD vaccine encoding the receptor binding domain (RBD) of the SARS-CoV-2 spike protein.

View Article and Find Full Text PDF

In this study, we screened a large library of (+)-camphor and (-)-borneol derivatives to assess their filovirus entry inhibition activities using pseudotype systems. Structure-activity relationship studies revealed several compounds exhibiting submicromolar IC values. These compounds were evaluated for their effect against natural Ebola virus (EBOV) and Marburg virus.

View Article and Find Full Text PDF

Three viruses included in the study were isolated from dead birds (A/duck/Omsk/1822/2006, A/chicken/Reshoty/02/2006, and A/duck/Tuva/01/2006), whereas the virus A/common gull/Chany/P/2006 was isolated from an apparently healthy gull during outbreaks of highly pathogenic avian influenza in Russia in 2006. The intravenous pathogenicity index (IVPI) of viruses A/duck/Omsk/1822/2006, A/chicken/Reshoty/02/2006, and A/duck/Tuva/01/2006 ranged from 2.7 to 3.

View Article and Find Full Text PDF

Background: In 2005 huge epizooty of H5N1 HPAI occurred in Russia. It had been clear that territory of Russia becoming endemic for H5N1 HPAI. In 2006 several outbreaks have occurred.

View Article and Find Full Text PDF

We studied 7 influenza (H5N1) viruses isolated from poultry in western Siberia and the European part of the Russian Federation during July 2005-February 2006. Full genome sequences showed high homology to Qinghai-like influenza (H5N1) viruses. Phylogenetic analysis not only showed a close genetic relationship between the H5N1 strains isolated from poultry and wild migratory waterfowls but also suggested genetic reassortment among the analyzed isolates.

View Article and Find Full Text PDF