In this investigation, machine-enhanced techniques were applied to bring about scientific insights to identify a minimum set of phenotypic/functional memory-related biomarkers for post-vaccination follow-up upon yellow fever (YF) vaccination. For this purpose, memory status of circulating T-cells (Naïve/early-effector/Central-Memory/Effector-Memory) and B-cells (Naïve/non-Classical-Memory/Classical-Memory) along with the cytokine profile (IFN/TNF/IL-5/IL-10) were monitored before-NV(day0) and at distinct time-points after 17DD-YF primary vaccination-PV(day30-45); PV(year1-9) and PV(year10-11). A set of biomarkers (eEfCD4; EMCD4; CMCD19; EMCD8; IFNCD4; IL-5CD8; TNFCD4; IFNCD8; TNFCD8; IL-5CD19; IL-5CD4) were observed in PV(day30-45), but not in NV(day0), with most of them still observed in PV(year1-9).
View Article and Find Full Text PDFJ Immunol Methods
September 2017
Technological innovations in vaccinology have recently contributed to bring about novel insights for the vaccine-induced immune response. While the current protocols that use peripheral blood samples may provide abundant data, a range of distinct components of whole blood samples are required and the different anticoagulant systems employed may impair some properties of the biological sample and interfere with functional assays. Although the interference of heparin in functional assays for viral neutralizing antibodies such as the functional plaque-reduction neutralization test (PRNT), considered the gold-standard method to assess and monitor the protective immunity induced by the Yellow fever virus (YFV) vaccine, has been well characterized, the development of pre-analytical treatments is still required for the establishment of optimized protocols.
View Article and Find Full Text PDF