Replacement of petrochemical-based materials with microbially produced biodegradable alternatives calls for industrially attractive fermentation processes. Lignocellulosic materials offer non-edible alternatives for cultivated sugars, but require often use of expensive sugar releasing enzymes, such as β-glucosidases. These cellulose treatment costs could be reduced if microbial production hosts could use short cellodextrins such as cellobiose directly as their substrates.
View Article and Find Full Text PDFThe fully biobased polyhydroxyalkanoate (PHA) polymers provide interesting alternatives for petrochemical derived plastic materials. The mechanical properties of some PHAs, including the common poly(3-hydroxybutyrate) (PHB), are limited, but tunable by addition of other monomers into the polymer chain. In this study we present a precise synthetic biology method to adjust lactate monomer fraction of a polymer by controlling the monomer formation at gene expression level, independent of cultivation conditions.
View Article and Find Full Text PDFPolyhydroxyalkanoates (PHAs) provide biodegradable and bio-based alternatives to conventional plastics. Incorporation of 2-hydroxy acid monomers into polymer, in addition to 3-hydroxy acids, offers possibility to tailor the polymer properties. In this study, poly(D-lactic acid) (PDLA) and copolymer P(LA-3HB) were produced and characterized for the first time in the yeast Saccharomyces cerevisiae.
View Article and Find Full Text PDF